
40V N-Channel Enhancement Mode MOSFET

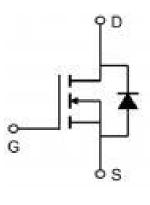
Description

The SX65N04NF uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

PDFN5*6-8L

General Features

V_{DS} = 40V I_D =65A


 $R_{DS(ON)} < 9m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

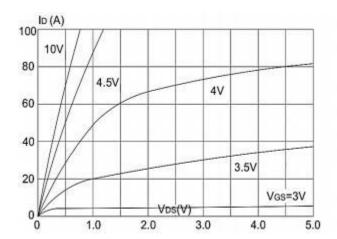
Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	40	V	
Vgs	Gate-Source Voltage ±20		V	
lo@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹ 65		Α	
lo@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹ 33		Α	
Ідм	Pulsed Drain Current ² 200		Α	
EAS	Single Pulse Avalanche Energy ³ 81		mJ	
las	Avalanche Current 10		Α	
P o@Tc=25℃	Total Power Dissipation ⁴	Total Power Dissipation ⁴ 33.7		
Pd@Ta=25°C	Total Power Dissipation ⁴	ipation ⁴ 2		
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$ C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
Reja	Thermal Resistance Junction-Ambient ¹	3.7	°C/W	
Reuc	Thermal Resistance Junction-Case ¹	2.1	°C/W	

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40			V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.028		V/°C
RDS(ON)	RDS(ON) Static Drain-Source On-Resistance VGS=10V , ID=30A	Vgs=10V , Ip=30A		7.7	9.0	mΩ
		Vgs=4.5V , Ip=15A		9.4	12	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.5	V
riangle VGS(th)	V _{GS(th)} Temperature Coefficient			-6.16		mV/℃
IDOO	Drain-Source Leakage Current	Vbs=40V , Vgs=0V , TJ=25℃			1	
IDSS		Vɒs=40V , Vgs=0V , Tɹ=55℃			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		22		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.4	Ω
Qg	Total Gate Charge (4.5V)			37		
Qgs	Gate-Source Charge	Vps=20V , Vgs=10V , Ip=25A		6		nC
Qgd	Gate-Drain Charge			7		1
Td(on)	Turn-On Delay Time			12		
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =1Ω		12		ns
Td(off)	Turn-Off Delay Time	b=25A		38		
Tf	Fall Time			9		
Ciss	Input Capacitance			2400		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		192		pF
Crss	Reverse Transfer Capacitance			165		
ls	Continuous Source Current ^{1,5}				50	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			200	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V
trr	Reverse Recovery Time			22		nS
Qrr	Reverse Recovery Charge	IF=30A , dI/dt=100A/µs ,Tյ=25℃		11		nC

Note:

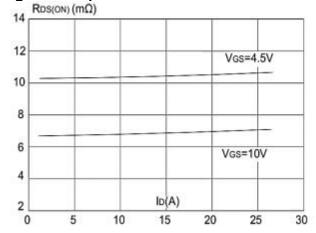
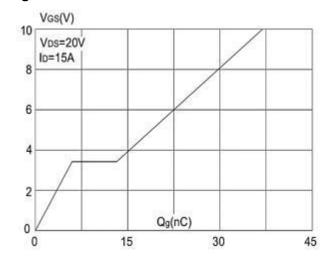
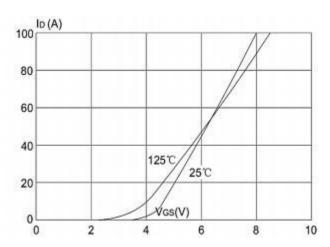

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\,\, \leqq \, 300 \text{us}$, duty cycle $\,\, \leqq \, 2\%$
- $3\sqrt{100}$ The EAS data shows Max. rating . The test condition is VDD=36V,VGS =10V,L=0.1mH,IAS =10A
- $4\,{\,{}^{^{\circ}}}$ The power dissipation is limited by $150\,{\,{}^{\circ}}\text{Cjunction}$ temperature
- 5 . The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

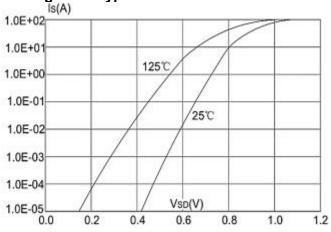
2

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics


Figure 3:On-resistance vs. Drain Current

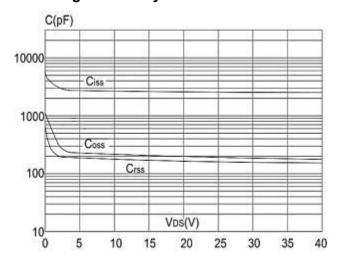

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

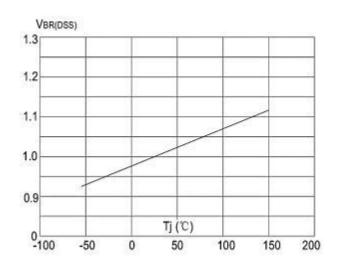


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

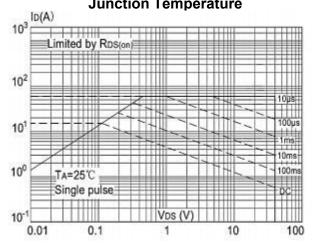


Figure 9: Maximum Safe Operating Area vs. Case Temperature

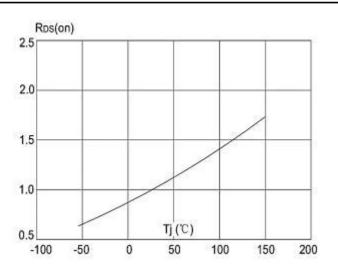
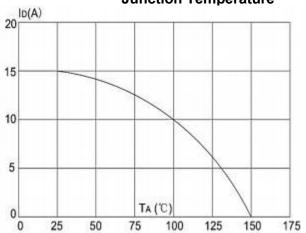
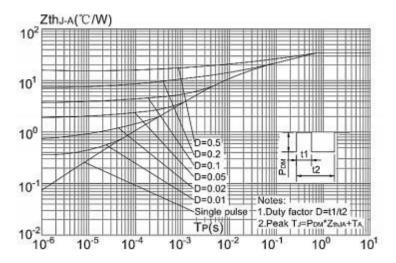
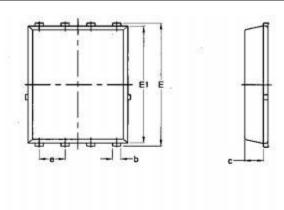
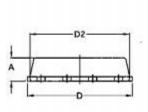
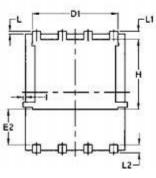



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current


Figure.11: Maximum Effective
Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data-PDFN5*6-8L-JQ Single

	Common				
Symbol	mm		Inch		
	Mim	Max	Min	Max	
Α	1.03	1.17	0.0406	0.0461	
b	0.34	0.48	0.0134	0.0189	
С	0.824	0.0970	0.0324	0.082	
D	4.80	5.40	0.1890	0.2126	
D1	4.11	4.31	0.1618	0.1697	
D2	4.80	5.00	0.1890	0.1969	
Е	5.95	6.15	0.2343	0.2421	
E1	5.65	5.85	0.2224	0.2303	
E2	1.60	1	0.0630	1	
е	1.27	7 BSC	0.05	BSC	
L	0.05	0.25	0.0020	0.0098	
L1	0.38	0.50	0.0150	0.0197	
L2	0.38	0.50	0.0150	0.0197	
Н	3.30	3.50	0.1299	0.1378	
I	1	0.18	1	0.0070	

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	PDFN5*6-8L		5000

5

www.sxsemi.com