

高性能漏电保护IC

1. 产品特性

- 检测 AC 型漏电信号
- 跳闸控制精度高,一致性好
- 直接驱动可控硅,输出 30ms 高电平脉冲
- 良好的抗电磁干扰(EMC)能力
- 兼容 110V 或 220V 供电系统
- 直接使用交流供电
- 较宽的温度范围(T_A=-20~85 ℃)
- 封装形式: SOP8

2. 产品应用

- 智能家居
- 热水器
- 智能马桶
- 漏电保护开关
- 电源模块

3. 产品描述

管、电阻、电容等元器件。

SL54123ADC 是一款高性能漏电保护器芯片,采用 CMOS 工艺。芯片内部包含稳压电源、放大电路、比较器电路、延时电路、计数器电路、跳闸控制电路及跳闸驱动电路。 芯片外围应用有脱扣线圈、压敏电阻、稳压二级管、二级

芯片适用于 AC 型剩余电流漏电检测,安全系数高,尤其适用于一些用电要求高的场合。

该产品采用标准脚的 SOP8 封装形式,亚光镀锡,采用无卤绿料,满足环保要求。

图 1 封装外观图

高性能漏电保护IC

目录

1. 产品特性	1	8. 测试电路图	6
2. 产品应用	1	9. 功能框图	7
3. 产品描述	1	10. 功能描述	7
4. 引脚定义	3	11. 应用原理图	8
5. 订购信息	4	12. 封装信息	9
6. 极限参数	5	13. 历史版本 1	0
7 由与全粉	E		

4. 引脚定义

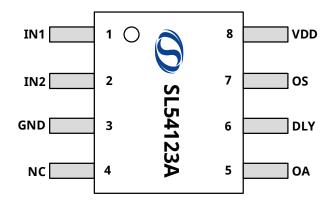
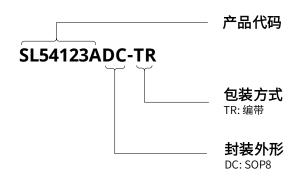


图 2 引脚排列图


引脚		类型	44.45		
序号	名称	英 坚	描述		
1	IN1	输入 1	信号放大器输入端 1		
2	IN2	输入 2	信号放大器输入端 2		
3	GND	地	地		
4	NC	NC	空脚		
5	OA	NC	放大器输出,外接滤波电容		
6	DLY	NC	延时设置,外接滤波电容		
7	OS	输出控制	输出控制可控硅		
8	VDD	电源	电源		

5. 订购信息

产品名称	丝印	工作温度(°C)	封装形式	包装方式	数量
SL54123ADC-TR	54123A	-20~85	SOP8	编带	4000 颗/盘

订购信息格式说明

6. 极限参数

符号	参数	测试条件	最小值	最大值	单位
V _{DD}	工作电压		-	85	٧
I_{DD}	工作电流		-	8	mA
Vn	管脚对地电压		-1.0	7.5	V
T _A	工作温度		-20	85	°C
T _{STG}	存储温度		-55	150	°C

7. 电气参数

除特别说明,**T**_A = -20°C~85°C

符号	参数	测试条件	电路图	最小值	典型值 (1)	最大值	单位
I_{S}	电源电流	V1=5.2V	1	150	250	1000	uA
V_{DD}	电源电压	V1=5.5V	2	4.8	5.2	5.4	٧
I_{DLYH}	DLY 脚输出高电流	V1=5.5V, V _{DLY} =0V, V _{IN1} -V _{IN2} =30mV	3	35	50	70	uA
I _{DLYL}	DLY 脚输出低电流	V1=5.5V, V _{DLY} =1.6V, V _{IN1} -V _{IN2} =0mV	4	ī	10	1	uA
I_{OSH}	OS 脚输出高电流	V1=5.5V, V _{IN1} -V _{IN2} =30mV	5	120	250	1000	uA
V _{OSL}	OS 脚输出低电平	V1=5.5V, V _{IN1} -V _{IN2} =30mV	6	-	-	0.6	٧
V_{PT}	正动作电压	V1=5.5V, V _{IN1} -V _{IN2} (2)	7	4.5	-	5.5	mV
V_{NT}	负动作电压	V1=5.5V, V _{IN2} -V _{IN1} (2)	8	4.5	-	5.5	mV
T _{ON}	锁存时间	V1=5.5V, V _{IN1} -V _{IN2} =30mV ⁽³⁾	9	20	30	40	ms

备注:

(1) 典型数值的条件是 T_A=25℃

(2) 当在 V_{IN1} 和 VI_{N2} 之间的直流电压 V_{PT} 、 V_{PT} 小于4.5mV 时,OS 管脚输出低电平。当 V_{PT} 、 V_{PT} 大于5.5mV 时,OS 管脚输出高电平

(3) Ton 为OS 输出高电平持续时间

8. 测试电路图

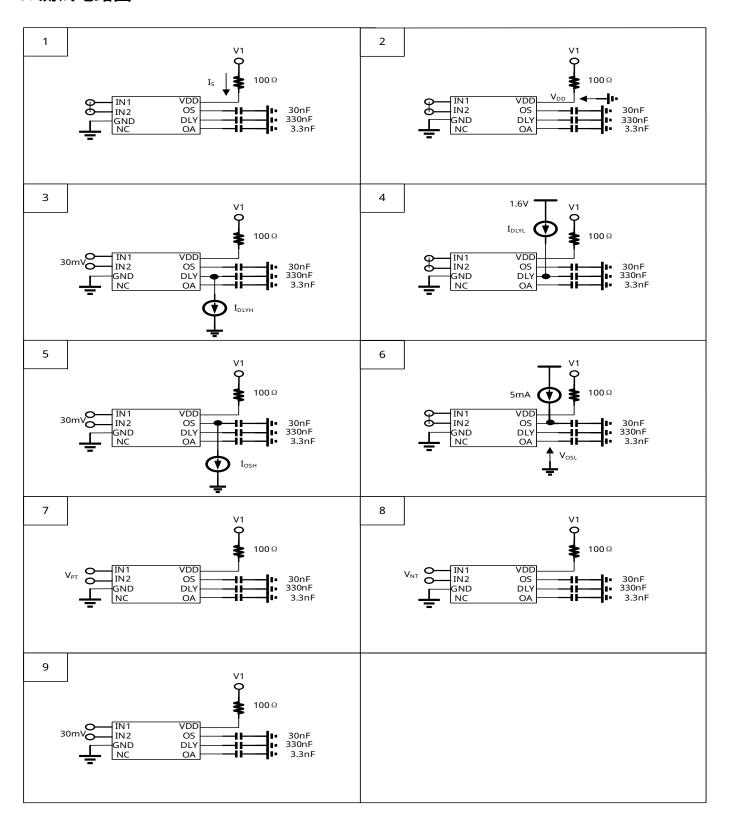


图 3 测试电路图

9. 功能框图

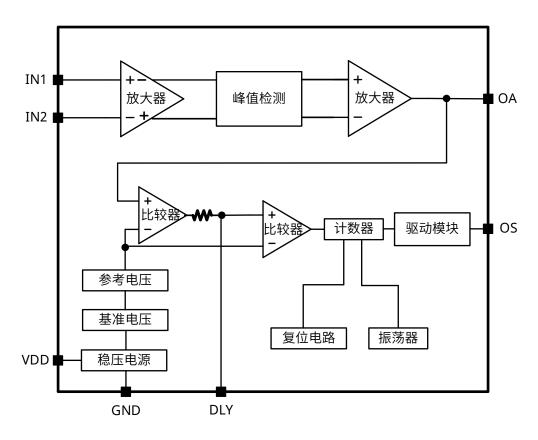
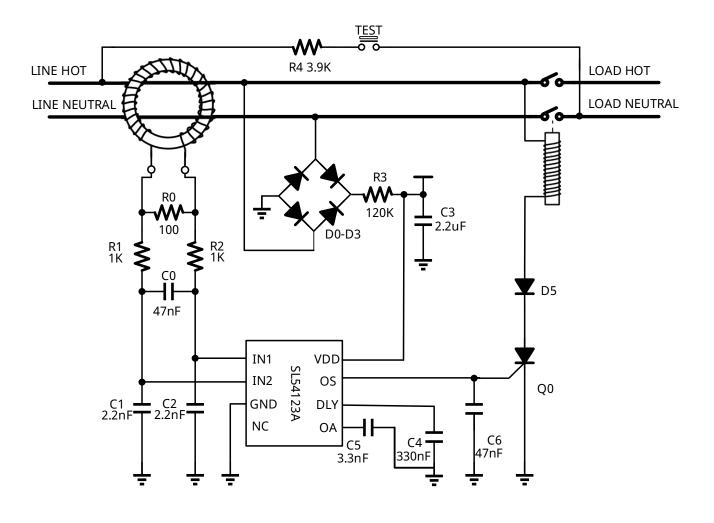
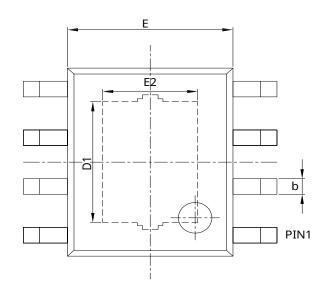
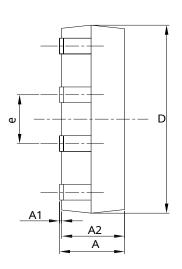


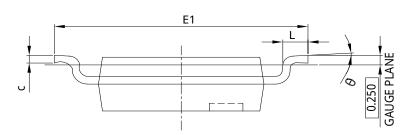
图 4 功能框图

10. 功能描述

SL54123ADC 漏电保护器芯片用于检测火线和零线上的漏电信号。当有漏电信号产生时,零序电流互感器(ZCT)检测到漏电信号,其次级线圈输出感应信号作为漏电保护器专用芯片的输入。当漏电流的 RMS 值得大于漏电保护器规定的额定电流(rms)时,漏电保护器芯片输出管脚 OS 产生动作电平,该电平脉冲宽度为 30ms 左右,驱动外部可控硅导通。

11. 应用原理图


图 5 应用原理图

12. 封装信息

Symbol	Dimension	s In Millimeters	Dimensions In Inches		
Syllibol	Min.	Max.	Min.	Max.	
Α	1.300	1.700	0.051	0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
D1	3.050	3.250	0.120	0.128	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.160	2.360	0.085	0.093	
е	1.270(BSC)		0.05	0(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

13. 历史版本

Rev.A1.1

版本号	日期	描述
RevE1.0	2023-07-23	初始版本
RevA1.0	2024-02-20	正式版本发布
Rev.A1.1	2025-03-26	新增封装外形图,更新订购信息,更新 POD 尺寸