ﬁ AN4738
’l life.augmented Application note

Getting started tutorial for SPC560P50xx

Introduction

The aim of the getting started tutorial is to introduce the hardware and software tools
delivered in SPC560PKIT144S starter kit for SPC560P50xx microcontrollers and to show
how to use them. The information available in this tutorial, with the due slightly
modifications, can be applied to all SPC560Pxx family.

The tutorial is based on two examples, the first one running from internal random access
memory (RAM) and the second one running from internal Flash memory. The tutorial covers
the first steps of creating a project in Green Hills® development environment, of writing the
code of the application and the building process of the project. Then it describes the first
steps on how to setup the hardware environment and how to debug the application.

With this tutorial the user is able to create his own functional examples and to prepare to
move to more complex programs using wider range of peripherals of the microcontroller.

July 2015 DoclD028073 Rev 1 1/50

www.st.com

http://www.st.com

Contents AN4738

Contents
1 PrerequUISItes 6
2 Glossary / Terminology 7
3 Creating a ProjecCt 8
3.1 Defining a project 9
3.2 Defining a program content 11
4 Creating an application 14
5 Building the project 18
5.1 Adding new filesto the project 18
5.2 Build options 19
5.3 Linker directive file 21
5.4 Compileand build 23
6 Hardware setup 24
6.1 POWer SetUP . .o 24
6.2 LED SetUp ..o 25
6.3 BULION SEtUP . . . o 26
6.4 Mini-module setup 27
7 Debugging the application 30
7.1 Debug connection 30
7.2 Debug IDE default layout 31
7.3 Scriptfilesetting 32
7.4 Loading application to RAM 33
8 Preparing Flashimage i 35
8.1 Creating get_start romproject 35
8.2 Adding applicationfile 35
8.3 Adding ResetVectorfile 36

8.3.1 BOOTID - Boot identifier (fixed Ox5A value) 36

2/50 DocID028073 Rev 1 ‘Yl

AN4738 Contents

8.4 Linker file standalone_romrun.dd 36

8.5 Building the Flashimage i, 37

9 Programming Flashimage 39
9.1 Highlevelload e, 39

9.2 Programminganimage i 40

10 SUMMI Y ..ot e e 41
ApPPENdiX A APPTOP.C v et 42
Appendix B resetVecCtor.pPC ..o vt 45
Appendix C standalone_ram.ld.......... 46
ReVISION NISTOrY . .. 49
kys DoclD028073 Rev 1 3/50

List of tables AN4738

List of tables

Table 1. Prerequisites table e e 6
Table 2. Abbreviations and aCroynNMS i e 7
Table 3. SPC560P50xx mini-module setting o 28
Table 4. Boot address OCCUPAtioONt e 36
Table 5. RCHW bit definition 36
Table 6. Document revision history 49

3

4/50 DoclD028073 Rev 1

AN4738

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

3

MULTI ProjeCt Manager . . . o oottt e e e e e e et 8
Project wizard —name selection. e 9
Project Wizard - operating system selection. 10
Project Wizard - processor and hardware selection. 11
Project Manager - selection of projecttype i 12
Project Manager - name and directory setting i 12
Program Manager - program layout e 13
Final project StruCtUreo e 13
Application SCheme. 14
Building a project — adding sourcefile 18
Building a project — structure after adding sourcefile.............. 19
Building a project —build options e 20
Building a project — Modified Optionstab............ 21
Hardware - SPC560P50xx evaluation board 24
Hardware - power block setting 25
Hardware — LEDS Settingo e e e e e 26
Hardware — buttons setting. i 27
SPC560P50xx mini-module setting 28
CoNNECHION MaANAQGET . . . vttt ettt et e et e e e e 31
Default layout 32
Automatic script options dialog box e 33
Image download Status.t e 34
Debugger — SOUICE COAEo vt e e e e e e 34
GHS — program group for Flashimage. i i 35
Flashing —highlevelload i e 39
Flashing —load dialog.o e 40

DoclD028073 Rev 1 5/50

Prerequisites

AN4738

1 Prerequisites
This tutorial is based on the use of different hardware and software tools that need to be
installed and used with their relative license.
Table 1. Prerequisites table
. Part of .
Iltem Tool Version starter kit CD Description
1 | sPcsEXX EVB Motherboard i Yes Mot_h_erboard for SPC56XX processor
families
- Mini-Module for SPC560P50xx
2 | SPC560P 144LQFP Mini-module - Yes (144LQFP)
3 | GHS MULTI IDE 503 No Green Hills Softvv_are integrated
development environment (IDE)
GHS scripts for SPC560P50xx Scripts adding targets for SPC560P in
4 - Yes .
processor GHS project manager
64K Starter edition of Power
Architecture® Nexus debug environment
5 |P&E ICDPPCNEXUS code debugger 1.16 Yes supporting SPC560P50xx devices
(debugger comes with P&E’s
PROGPPCNEXUS flash programmer)
6 | P&E USB Multilink JTAG pod - Yes JTAG debug cable for USB connection
7 | SPC560P50xx header files 10 Yes Header files for SPC560P50xx processor

registers (jdp_0100.h)

6/50

DoclD028073 Rev 1

3

AN4738 Glossary / Terminology

2 Glossary / Terminology

Table 2. Abbreviations and acroynms

Abbreviation or acronym Description / Definition

EVB Evaluation board

GHS Green Hills® Software

JTAG Joint Test Action Group

LED Light emitting diode

LQFP Low-profile quad flat package

Nexus Embedded processor debug interface standard (IEEE-ISTO 5001-
2003)

P&E P&E Microcomputer Systems

PIT Periodic interrupt timer

RAM Random access memory

SRAM Static random access memory

usB Universal serial bus

3

DoclD028073 Rev 1 7/50

Creating a project AN4738

3

Creating a project

This section describes how to create a new project in the Green Hills environment. The
project includes folder structure and all needed files. It is the starting point for both examples
of getting started tutorial.

Run the multi.exe to open the Green Hills environment. The multi.exe file is available in the
start menu under the Green Hills Software (GHS) branch or directly under the GHS
installation directory. It opens the MULTI® Project Manager as shown in Figure 1. The
MULTI Project Manager manages the project collections and settings and allows compiling
and building operations.

Figure 1. MULTI Project Manager

MULTI Project Manager O] x|
File Edit “iew Build Connect Debug Toolz ‘windows Help
e v o) A N el e A
[Find: =] [
M ame | Type | =

Status | Info | Command ||

8/50

3

DoclD028073 Rev 1

AN4738 Creating a project

3.1 Defining a project

The MULTI Project Manager tool is used to create a new project for the application. Select
FileNew Top Project to make sure that a popup window “Project Wizard” containing an initial
project setup appears, helping the user in creating a new project (see Figure 2).
The Project Wizard creates a project in three steps:
1. Project name: specify the name and directory for project
2. Operating system: selects the operating system the project runs on
3. Processor family or target board
a) Processor family: it can select the processor family want to use.
b) Target board: it can select the target board want to use.

Step 1 - Project name

Figure 2 shows the window in which the user can select the project name, the folder name
and its path where the project configuration has to be stored.

In this case you select directory “C:\GettingStarted”, but it is up to the user to decide where
project files should be placed. Refer to this directory as project default directory.

Figure 2. Project wizard — name selection

Project Mame > Operating Sygtern > Processor Family > Target Board
[Stand-alone] [JOP «PCEEQR Demo Board |

M ame: Idefaull Project Name

e

Directoy: | C:\GetingStaned Specify a name and directory for vour

project.

% Black I Mext » I Firish... Cancel

Step 2 - Operating system

This step, illustrated in Figure 3, offers options for the implementation of an operating
system. In this case select Stand-alone, which means that the application does not need
any operating system.

3

DoclD028073 Rev 1 9/50

Creating a project AN4738

Figure 3. Project Wizard - operating system selection

Project Mame > Operating Svzstern > Processar Family > Target Board

[Stand-alone | [JDF #PCBE3M Dema Board
Operating System: Dperating System
INTEGRITY
u-weldSity . .
vellSity Select the operating system your project
'” e willl run on. For some operating systems,
2 Land-3ione) % =
Thread: you will also need to specify the directory
Vitwlorks containing your operating system
distribution.

05 Distribution Directony:

< Back | Mext » I Finizh... Cancel

Step 3 - Processor family or target board

During this step the user can select the processor family or the target board to be used.
According to the selection, Project Wizard configures parameters and selects appropriate
files to include in the project structure. The Target Board list in Figure 4 contains the large
number of evaluation boards already supported.

Select JDP SPC560P Demo Board to keep alignment with the hardware. If the SPC560P
Demo Board option is missing in the menu, please check GHS\multi503\target\ppc\
directory where it should be available directories called SPC560B, SPC560P and
SPC563M. If not, copy these directories from the starter kit CD into the specified path. Then
after restarting the MULTI environment you should see them in the target board list.

3

10/50 DoclD028073 Rev 1

AN4738

Creating a project

Figure 4. Project Wizard - processor and hardware selection

Project Wizard

Project Name > Operating System > Processor Family > Taiget Board

[Stand-alone] [JDP xPC5E0P Dema Board |
Target Board: Target Board
|BM PowerPC 405GPr Evaluation Board ﬁ
|BM PowerPC 440EP Reference Board ; .
IBM PowerPC 440GP Reference Board Select the target board your project will
|BM PowerPC 440GX Reference Board run on.

IBM PowerPC 750GX Evaluation Board

IBM PowerPC 970FX Evaluation Board Momentum Maj
JDP xPC560B Demo Board

JODP xPC560P Demo Board

JOP #PC563M Demo Board
Momentum Puma-4
Motorola MEXEE0

Motorola MCP750

Motorola MCP765 (7400 core)
torola hAURAE 2ENN

b,
4

]
| s

<Back | tevo |[Finsh. | Cancel

3.2

)

Defining a program content

At completion of the first phase of creating a new project, MULTI has created a project
skeleton with predefined settings and target-specific information. Now the Project Wizard
continues with the definition of the project content where it is needed to set the project type
and desired build scheme.

Project manager consists of three steps:

1. Selection of project type

2. Name and directory setting

3. Program layout

Step 1 - Selection of project type

First, specify the project type (see Figure 5). The option “Program”, blue highlighted in the
Figure 5, allows to compile and build a particular application and provide its source files later
on.

DoclD028073 Rev 1 11/50

Creating a project

AN4738

Figure 5. Project Manager - selection of project type

Project Manager: Select Item to Add

El [h Create Mew ..
(B Hella*warld [C)
[E] Hella'world [C++]
M Hello world Library [
@ Helloworld Library [C++]
@ Library

P Pogen
3 Project

B[Add Existing File ...
By Source File
23 MULTI Project File
Wl Other File

S| |:D‘ Create Mew Demo Project . ..
[E Advanced Debugging

-

[Basic Debugging

Program

A framework for creating your own
prograrm.

Mext » I Finizh Cancel

Step 2 - Name and directory setting

This step is used to define the source files location and the program name (see Figure 6).
We leave the default setting for source file destination and set the name of the project to

get_start_ram.

Figure 6. Project Manager - name and directory setting

Project Manager: Settings for Program

1 : : : 5
Source Code Directony: I C:AGettingStartedhsrc == Program
Project Mame: I get_start_ram
A framewiorl for creating your own
program.
< Back I Mext > I Finizh Cancel
12/50 DocID028073 Rev 1 Kys

AN4738

Creating a project

Step 3 - Program layout

The configuration window, shown on Figure 7, allows to select the desired program layout.
Here, for the first example of getting started tutorial, choose Link to and Execute out of
RAM without checking any of the three options that can be seen on the left side of the
Figure 7 . Select layout enables to use the simple JTAG debugging environment without any
Flash programming functionality.

Figure 7. Program Manager - program layout

Project Manager: Settings for Program

IR (ln (=100 =1 1a 6 s ||_irl, bo and E secute out of Rk

Configuring a Standalone

Program
| Libraries
[Startup ; ; : ;
O | Swstem The settings in this dialog control
[0 Board Initalzation howy your program is linked and

allowy you to include optional,
customizable versions of various
libraries.

Link to and Execute out of
RAM =l

< Back I MHext » I Finizh | Cancel I

)

When all previous steps are finished, the Project Wizard generates a skeleton of the project
and fills it with appropriate files based on the previous selections. The final project skeleton
should look like the one in the Figure 8.

Figure 8. Final project structure

* C:\GettingStartedidefault_gpj - MULTI Project Manager

File Edit “iew Build Conhnect Debug Toolz ‘“Windows Help

CE2U R EEe R Ea=E

[Fing. =] =l
MHame Type =
B GettingStartedidefault gp Top Project

O [E srchget_start_ram.gpi Program
[tgtustandalone ramdd | Linker Directives
3 totresources.ap Target Resources

Status Ilnfo I E:'3"“"“5'f"':|Ill::’\Eettir‘ugstc'urtecl’\u:lefaL,lIt.g||:|i

DoclD028073 Rev 1 13/50

Creating an application AN4738

4 Creating an application

This section describes an application code of the tutorial example whose block diagram of
the functionalities is shown in Figure 9. Each function of the application is considered. The
whole code of the application is listed in Appendix A: appTop.c.

Figure 9. Application scheme

BUTTOMN 4
===
PD3 1 —— I
__LED1 _ L T
: I I |
! L __LEns
: ' : i
I I
I I PD7 I 1
Flasting in 500 | I
msintervals | I
e |
Generastes 500 ms intervals Light on when
with PIT timer BUTTOM 4=
Feads state of the BUTTOMN 4 pressed
and updates LED 4
aooordingly

The built-in editor of the GHS MULTI Project Manager allows to edit an application code. Itis
possible to open the editor selecting the Tools Editor item in the toolbox menu.
Subsequently, an open file dialog appears, where you can select the file to edit or to create.
In the example presented here, a new file named appTop.c has been created (please refer
to Section Appendix A). Once confirmed, an editor is opened with a blank sheet. Of course
any editor can be used for creating the source code. Application functionality is controlled by
main() function which calls event handlers in an endless loop. Before entering in the
endless loop, the function Init() is run.

void main (void)

{
// init peripherals
Init () ;

// infinitive loop
// - call TIMERO event handler
// - call BUTTON4 event handler
while (1)
{

TIMERO Event () ;

BUTTON4 Event ();

3

14/50 DoclD028073 Rev 1

AN4738

Creating an application

3

The initialization of processor peripherals and modules is covered by the Init() function. It
configures the following steps:

e Prepare configuration for Periodic Interrupt Timer (PIT) peripheral in RUNO mode
e Switch operating mode from DRUN to RUNO to enable used PIT peripheral

e Configure and start PIT peripheral

e Configure general 10 pins used for LEDs and button

e Disable software watchdog module

void Init (void)

{

// mode & peripheral enable

ME.RUNPC[1] .B.RUNO = 1; // prepare configuration word
ME.PCTL[92] .B.RUN CFG = 1; // and use it for PIT enable in
RUNO mode

// mode transition request

ME.MCTL.R = 0x40005AF0;

ME.MCTL.R = 0x4000A50F;

while (ME.GS.B.S_CURRENTMODE = 4) ; // wait for DRUN->RUNO
transition

// PIT timer configuration

PIT.PITMCR.R = 1; // enable periph. & stop timer
during debug

PIT.CH[O] .LDVAL.R = 0x7A1200; // reload wvalue

PIT.CH[O] .TFLG.B.TIF = 1; // clear potential flag

PIT.CH[O] .TCTRL.B.TEN = 1; // enable timer

// GPIO configuration

SIU.PCR[52] .R = 0x0200; // enable output for LED1
SIU.PCR[51] .R = 0x0100; // enable input for BUTTON4
SIU.PCR[55] .R = 0x0200; // enable output for LED4

// disable SWT

SWT.SR.B.WSC 0xC520; // clear soft lock sequence
SWT.SR.B.WSC = 0xD928;

SWT.CR.B.

N = 0; // disable watchdog}

All peripherals are accessible through symbolic names which are defined in the predefined
header file. You need to include the jdp_0100.h file in the source file. It is recommended to
keep the files in one place, as the header file represents the top of header file structure for
SPC560P50xx devices and includes another header file inside. For that reason it is
recommended to copy jdp_0100.h and typedefs.h header files from the starter kit CD to
spcHeaders directory created in the project default directory
C:\GettingStarted\spcHeaders

#include “..\spcHeaders\jdp 0100.h"
The example code contains two handlers which are called periodically from main() function.

The first handler, TIMERO_Event(), asserts periodic events generated by the PIT timer.
Each time it finds the timer flag set, it toggles LED1 and clears the flag.

DoclD028073 Rev 1 15/50

Creating an application ANA4738

The second handler, BUTTON4_Event(), polls status of the button and lights LED4 on when
button is pressed. The following code snippets show handler implementation.

void TIMERO_ Event (void)
{
// wait for timer flag signalling expiration
// then toggle with pin and clear flag by writing '1'
if (PIT.CH[O0] .TFLG.B.TIF)
{
SIU.GPDO[52] .B.PDO = ~SIU.GPDO[52] .B.PDO;
PIT.CH[O] .TFLG.B.TIF = 1;
}
}
void BUTTON4 Event (void)
{
if (SIU.GPDI[51].B.PDI == 0)
SIU.GPDO[55] .B.PDO = 0;
else
SIU.GPDO[55] .B.PDO = 1;

}

The last extract of code, shown in the following, isa__ghs_board_memory_init() function,
which represents a specific functionality that has to be executed after power on when
running from Flash memory. It initializes the SRAM and its ECC module because after
power on, there are random values that can generate system events when not properly
initialized. As seen from the code, RAM initialization is done by means of assembly
instructions. It can be noticed, there is a preprocessor macro called BUILD_TO_FLASH
providing an option to remove the function when building the image to the RAM when it is
undesired, because it would overwrite the code loaded to the RAM. In this case, memory
initialization is provided by a debugger script before loading the program to the RAM. In the
first example the get_start ram macro BUILD_TO_FLASH is not defined, therefore the
function is not present in the image. You use it when you build the image to Flash memory in
the second example shown in this tutorial.

#ifdef BUILD TO FLASH

void _ ghs board memory init (void)
{
// RAM memory initialization
#pragma asm
e lis 1r6, 0x4000
e or2i r6, 0x0000
e lis r7, 0x4000
e or2i r7, Ox9FFF

init ram loop:
e stmw r0,0(x6)
e addi r6,r6,128
se cmp r6,r7
e _blt cr0,init ram loop

#pragma endasm

}

#endif //BUILD TO FLASH

3

16/50 DoclD028073 Rev 1

AN4738 Creating an application

The previous pages described the application source code. The whole code is listed in the
Appendix A: appTop.c. Next step is to add the source file to the project, compile it and build
an image that can be downloaded to the processor.

3

DoclD028073 Rev 1 17/50

Building the project

AN4738

5 Building the project

5.1 Adding new files to the project

The source file appTop.c has to be added into the project. Select src\get_Start_ram.gpj in
the project manager and then click on EditAdd File into get_start_ram.gpj item (see

Figure 10).

Figure 10. Building a project —adding source file

% C:\GettingStarted\default_gpj - MULTI Project Manager

File | Edit “iew Buld Connect Debug Tools ‘Windows Help

Configure. .
Set Build Options. .
Modifu Project

g

i
i

gl

o e

=
r]

Edit

Ctr+E I

=

| [

Add Item into get_start_ram.gpj...
Add File into get_start_ram. gpj...

nda
e

Copy get_start_ram.gpj az Link
[Eamyiget start ramapnllossl

Eagte as ik
Easte Lozal
Bui Remove get_start_ram.gpj

Con = [elete qet star ramap|
Lir

| ram.gp] has changed

Dor SetBuild Target...
Bui Set Build Macros...

does not exist

& z003)

4

—Stf Advanced

v aet_start_ram.gpj

|F'|:|werF'E

A dialog box appears where you find and select appTop.c file. When the file is added, you
should see a project structure like the one shown on the Figure 11.

18/50

DoclD028073 Rev 1

3

AN4738

Building the project

Figure 11. Building a project — structure after adding source file

File Edit “iew Buld Connecl

_. - C:AGettingStartedidefaull.gpj - MULTI Projes

Diebug Tools WE‘ldDW& Help

=10] x|

FElkhesBRE9e R LEE

[Find: =]

0] tatsstandalone ramm.id
[tgtvresources.gpj

Mame | Type I
B GetingStartedtdefault gpj Top Project
B B srchget start ram.gpi Frogram
B appTopc C Fil=

Linker Directives
Target Resources

Building get start ram.elf
Compiling appTop.c becauze get start ram. gp] has changed
Linking get_start ram.elf becausze it does not exist

Dane
Build successful (Mon May Z6 1l0:47::26 2008) X
Statuz I Info I Command ||E:"»GettingStarted"«src'\get_start_rarn.gpi |F'n:nwerF'I:

Once the source file is inside the project, compile it. But before performing compile
operation, it is recommended to check and eventually set some build parameters.

5.2 Build options

To open the build setup dialog, keep src\get_start_ram.gpj line selected and choose
EditSet Build Options. A dialog window appears with three tabs. Keep the All Options tab
selected (see Figure 12).

)

DoclD028073 Rev 1 19/50

Building the project

AN4738

Figure 12. Building a project — build options

Option Categories:

¥ Build Options for get_start_ram.gpj

B azic Options Al Ophians | bodified Dptionsl

Build Optionz in Categorny:

Optirmization
Debugging
Freproceszor

C/C++ Compiler

Azzemnbler
Linker

HTML Cormpiler
Advanced

FORTRAM Compiler

Compiker Diagnostics
DoubleCheck [CAC++)]

Hame eke
Output Filename get_start_ram.elf

Object File Dutput Directory objzget_start_ram

Source Root

Include Directories

Libramy Directories

Libraries

Source Directories Relative to This File

Intermediate Output Directory Relative to Top-Level Project

& |E| e &

Documentation for [Output Filename]

Mames the output file being generated. The output file tupe [for example, a libram or an aszembly file] depends
on the other optionz that have been zpecified. The builder enforces specific zuffi<es for some tppes of output
files. The equivalent driver option is:

Cormmand Line | Diocumentation]l

Select “Project” from the listed Option Categories. Change the name of the build result.
Double click on Output Filename item, fill in the target name, and click OK. In this case the
name is get_start_ram.elf. Another option that has to be modified is located under group
AdvancedDebugging OptionsNative Debugging Information. There is a Generate
MULTI and Native Information element which has to be set to Dwarf (v2), in order to see
mixed source code and assembly in the debugger. These two options are enough for now.
Selected and modified options for this project can be checked by selecting the Modified
Options tab (see Figure 13) or by opening a get_start_ram.gpj file in an editor program.

20/50

DoclD028073 Rev 1

3

AN4738

Building the project

Figure 13. Building a project — Modified Options tab

¥ Build Options for get_start_ram_gpj — O] x|

Basic Options I &l Options Modified Options I

Build Options with values:

Marne | alue

Output Filename get start ram.elf
Object File Dutput Directory objzhget_start_ram
Debugging Lewvel RULTI

Generate MULT! and M ative Information | Dwarf [v2)
Source Directories Relative to Thiz File

AR

Documentation for [Dutput Filename] -

Mames the output file being generated. The output file type [for example. a library or an aszembly file) depends on the other options
that have been specified. The builder enforces specific suffises for gome tppes of output files. The equivalent driver option i

* —o filename [Mote that the -0 option can onlp be used in combination with the -, -E_-Make, -P_ -0, or -5 options if ;I
Command Line I Documentation] | o
one I

5.3

3

Once all options are set, compile source file. Select appTop.c file in project manager and
click on BuildCompile appTop.c item. If compilation process doesn't run into problems,
build successful information appears in the status window. Otherwise build details window is
opened where more details about the problem appear by double clicking on the error or
warning message. Output files of compilation process are put under objs\get_start_ram

directory.

Linker directive file

Before starting a build operation, you check the configuration of linker file used by linker to
determine memory layout. So, double click on the tgt\standalone_ram.ld file in the project

manager window to open the file in the editor.

Basic linker file has three sections:

1. Memory definition

2. Constant definition

3. Partitioning of code and data segments

Memory definition tells the linker which memories are present on the hardware, their start

addresses and size. If needed it is necessary to align it with used hardware. For the

SPC560P50xx microcontroller it should look like the following line codes, 512 KB of Flash

memory and 40 KB of internal RAM.

MEMORY {

// 512K Internal Flash
flash rsvdl : ORIGIN = 0x00000000, LENGTH = 0
flash reset : ORIGIN = ., LENGTH = 8

DoclD028073 Rev 1

21/50

Building the project AN4738

22/50

flash rsvd2 : ORIGIN = ., LENGTH = 0
flash memory : ORIGIN = ., LENGTH = 512K-8
flash rsvd3 : ORIGIN = ., LENGTH = 0

// 40KB of internal SRAM starting at 0x40000000
dram_rsvdl : ORIGIN 0x40000000, LENGTH = 0
dram_memory : ORIGIN = ., LENGTH = 40K

Next section represents a definition of the useful constant. By default it defines the size of
stack and heap regions.

DEFAULTS
stack reserve = 4K
heap reserve = 2K

}

The last section of the linker file is the partitioning of code and data segments in memory.
The only things to check are target memories for code segments (.text, etc.) and data (.bss,
.data, etc.). To build everything to RAM, all partitions should be placed to RAM memories,
dram_memory in this example.

SECTIONS
.PPC.EMB.sdata0 ABS : > dram memory
.PPC.EMB. sbss0 CLEAR ABS : >

.text : > dram_memory
.vletext o>

.syscall To> .
.resetvectorNOCHECKSUM: >

.secinfo : >

.rodata

.sdata2

.fixaddr

.fixtype : >

.sdabase ALIGN(16) : > dram memory

.sdata : o>

.sbss

.data

.bss : .

.heap ALIGN(16) PAD(heap reserve) : >
.stack ALIGN(16) PAD(stack reserve) : >

// These special symbols mark the bounds of RAM and ROM memory.
// They are used by the MULTI debugger.
//

__ghs ramstart MEMADDR (dram_rsvdl) ;

__ghs_ ramend MEMENDADDR (dram_memory) ;

__ghs romstart = MEMADDR (flash rsvdl) ;

__ghs_ romend MEMENDADDR (flash rsvd2) ;

3

DoclD028073 Rev 1

AN4738 Building the project

54 Compile and build

If the compile operation is completed and the memory layout matches the requirements, try
to build the image to debug on simulator or use a real hardware. Select
src\get_start_ram.gpj line in the project manager and click on BuildBuild Program
get_start_ram.elf item. Again status and result of build program operation are in the status
window. Any error or warning opens build details window with more pieces of information.
Output files of build phase are put under project default directory where default.gpj file is
placed. By default result of build operation consists of more files, such as memory map file,
etc. The most important file in this case is get_start_ram.elf. This file is used in the
debugging phase.

3

DoclD028073 Rev 1 23/50

Hardware setup AN4738

6 Hardware setup

Before going into the real debugging, it is right time to check hardware environment and its
setting. Tutorial goes through some important points of the hardware configuration needed
by getting started example. SPC560P50xx evaluation board, xPC56XX EVB, consists of two
parts of hardware:

e Motherboard (see Figure 14)—Motherboard provides common functionality used in
most application like serial communication interface, CAN transceivers, power supply,
buttons, LEDs and so on.

e Mini-module to provide a minimum setup for the microcontroller, such as socket for the
processor, crystal oscillator, debug interface and so on.

Figure 14 provides an overview of the system. In this figure, both the motherboard and the
SPC560P50xx mini-module are visible.

Figure 14. Hardware - SPC560P50xx evaluation board

6.1 Power setup

As first step you can power supply block setting, connection of jumper J5 and VIO as it is
showed in Figure 15.

24/50 DocID028073 Rev 1 ‘Yl

AN4738

Hardware setup

Figure 15. Hardware - power block setting

J5

3" set of headers
from top must be
shorted by jumper

VIO

Selection of 10 voltage
for peripheral like
LEDs 5V
recommended

6.2 LED setup

In the example shown Figure 16 in LED1 and LED4 are used. To connect them to the
processor, headers 1-2 and 7-8 of the J7 jumper array have to be shorted (see Figure 16).

)

DoclD028073 Rev 1

25/50

Hardware setup AN4738

6.3

26/50

Figure 16. Hardware — LEDs setting

a1

* Butrons

MEYT KEY3 MEFA
RmR_® B2 WA
3 . - -

J7

LED connection to
processor

Button setup

Check the buttons settings on the motherboard. In this example, the active state of button 4
must be set to low active state level. For such purpose header 7-8 of J8 jumper area should
be shorted, J9 connection shorted between middle and “0” header and J40 shorted between
middle and “1" header. Figure 17 shows the right settings.

3

DoclD028073 Rev 1

AN4738 Hardware setup

Figure 17. Hardware — buttons setting

Jo J40

Low active state High mactlve state
i selection

selection

Low = Middle - 0 High = Middle - 1

LEm LD : e LD
=
LEDs -
“Buttons
J8 KEYT
Button connection to
processor
6.4 Mini-module setup

The SPC560P mini-module has connectors and several configuration jumpers. Figure 18
shows their layout and Table 3 shows the right settings and functions.

)

DoclD028073 Rev 1 27/50

Hardware setup AN4738

Figure 18. SPC560P50xx mini-module setting

Standalone Reference
power voltage setting JTAG connector

supply Reset

EXTERNAL POWER

1h1111iﬁiii!ilifﬁﬁ'|iih i

Crystal
oscillator
O
Power supply setting Boot setting
Table 3. SPC560P50xx mini-module setting
Block Jumper Setting
Standalone power supply - Connector for power supply
J3 5V
Reference voltage setting
J4 5V
] J14 Connected
Power supply setting
J15 Connected
J7 Connected middle-0
Boot settings J8 Connected middle-0
J9 Connected middle-0
Crystal oscillator J10 Connected 1-2 and 3—4
Reset 113 C_onr_lected to enable reset
circuit
JTAG connector - Connector for debugger
V_Debug Ji7 Connected middle-3.3V

28/50 DocID028073 Rev 1 ‘Yl

AN4738 Hardware setup

Table 3. SPC560P50xx mini-module setting (continued)

Block Jumper Setting
Vpp_HV_REG_0 J19 Closed
Vpp_HV_FLAOFLA1_EN J20 Closed
Vpp_HV_0SCO0 J21 Closed
Note: For more details on the connection of the evaluation board, please see SPC560PX EVB

User Manual v.1.02.pdf.

3

DoclD028073 Rev 1 29/50

Debugging the application AN4738

Z

7.1

Caution:

30/50

Debugging the application

Once the evaluation board is properly configured, the microcontroller is inside SPC560P
144LQFP minimodule socket and the sw application is successfully built, the debugging
process can start.

Debug connection

First, connect a debug tool, in this case P&E’s USB multilink, to the JTAG connector placed
on the SPC560P50xx mini-module. The red stripe on the cable corresponds to pin 1 on the
connector, which is in the top-left position on the header.

The power supply must be off before connecting debug tools to the board.

When the debug tool is connected, switch the power supply on using switch K1 in the top-
left corner on the motherboard. The green LED on the P7E debug tool should be on. Then
start ICDPPCNEXUS debugging software on PC. There is a link to executable file in start
menu under P7E Nexus starter kit item or directly in P&E micro-install directory. At first
connection the manager dialog box opens, where a connection method and its parameters
are asked (see Figure 19).

3

DoclD028073 Rev 1

AN4738

Debugging the application

7.2

)

Figure 19. Connection manager

PEMICRO Connection Manager

Y'ou have selected to display this dialog on startup. Specify communications
parameters and click OK.

—Connection port and Interface Tupe
Add LPT Part

Refresh List

Interface: |L|SB PowerPC Mexus Multiink (USE-ML-PPCNEXUS)

Fort: |USB1 : USB-ML-PPCHE=US Rew & [PES011407) j

—Target CPU Information

CFU: PowerPC Processor - Autodetect Advanced |

—BDM Communication Speed

Bl Earal el Eortuwatstate s H] MRS T = I]

BOM Debug Shift Freq : BDM_SPEED = I 1 - BDM CLOCK FREQ = 500000 Hz _'_I

—MCU Internal Bus Frequency [For programming)
{0 el etent

£ B termal Bis frequensy (ERER] nHz= I 0 [Eemimal]

—FReset Option
[~ Delay after Reset and before communicating ta target for I 0 millizeconds [decimal].

[Comecisss) | towme | von

[+ Show this dialog before attempting to contact target [Othersize only display on Eror]

The proper interface and port, in this case the USB PowerPC Nexus multilink, must be
specified. The rest of selection boxes remain unchanged. Then you can connect to the
microcontroller. Click on connect (reset) button. Debugger tries to enter debug mode in the
microcontroller.

Debug IDE default layout

When the debug mode is established, it executes an initializing configuration default script.
It serves to emulate boot assist mode (BAM) sequence, which is skipped when booting in
debug mode. Regardless of script success, program starts with default windows layout, see
Figure 20.

DoclD028073 Rev 1 31/50

Debugging the application AN4738
Figure 20. Default layout
#_ ICDPPCHEXUS Debugger - Yersion 1.16 == E3
File Ewecute Configuration ‘Windows Help
HLa|™p"| Asp|msM|Rsm| HL, [HL, |HL aral J| | |,_, | R ulnﬂu srn| |
* }lﬂwl 'plﬂg-P A A == ll |I:I 0 S bl e kil
= R onon window: _io] »
PC FFFFFFFC CR 20008000808 Looee158 0O B8O 6O BB ¥ LBFFFO54 B FFFFFA58
HSR 08606068 XER LTSl i) L4LBoop154 00 6O B8 88 -+ + BoABBB00 FFFFFFFF I1legal Instruction
LR Lapeachy CTR 4O080E8Y 40008158 O 60 80 88 _||- - ©DBOODGG4 FFFFFFFF I1legal Instruction
L4LBoop15C 00 6O B8 88 ... + + BOAeBEOR FFFFFFFF I1legal Instruction
Ry rapafiRs R1p Tt 48860160 40 88 OF 98 @... -+ §000888C FFFFFFFF I1legal Instruction
R2 KO0O8F97 R18 00000000 Lpaee164 4B BA BF 98 @... + + PEg@BE1a FFFFFFFF I1legal Instruction
R3 aepaeea1 R19 GAAERAGE LBoop168 48 B8 2C 8C @.,. + + Bo@eeE1L FFFFFFFF I1legal Instruction
R4 408082C3C R28 gaepB00a0 LOoee16C OO0 0O 60 @8 ___ . ﬂ ~ + fpooooe18 FFFFFFFF Il1legal Instruction o
RS 400882044 R21 Boopanee . }-
Ré 4apaAFI7 R22 LTS LT i \ dow 18]
e i inaneead BRFFFFFFFC 4BFFFO54 B FFFFFO5A <]
RO 4BE080E0 R25 4ABBOFOB -+ + poBpBasee FFFFFFFF Illegal Instruction
R18 4000BBS4 R26 48802C8C + -+ BO060004 FFFFFFFF Illegal Instruction
R11 4B0E2CA0 R27 0008008688 + + poppBaAes FFFFFFFF I1legal Instruction
R12 0e@0@e8A R28 gaaeaaat RO | 15115 11514 FFFFFFFF Illegal Instruction
R13 40P08FA@ R29 48802C3C + + BOBpA610 FFFFFFFF I1legal Instruction
R14 0O8B0O0GS R36 40882044 + -+ B0peaa1y FFFFFFFF Illegal Instruction
R15 068600066 R31 40086BIL + + poppeaA1s FFFFFFFF I1legal Instruction
Reset Script mpc5633m_booke.mac + + BoBeeasic FFFFFFFF I1legal Instruction
(i ~ + 00000820 FFFFFFFF Illegal Instruction
General | 64BIT-1 | 64BIT-2 | Basic | PCFIFO | - - 80080024 FFFFFFFF Illegal Instruction
= = + + BOpEA62E FFFFFFFF Illegal Instruction
| -|E||_X_| + + B08AA02C FFFFFFFF I1legal Instruction
- - - BOpBeAa3 8 FFFFFFFF Illegal Instruction
AddVanable' AddngJsierI Lot Yiaaliles | ~ -+ DOOBOA3Y FFFFFFFF Illegal Instruction
a : 5% - + 0O0pAa3s FFFFFFFF Illegal Instruction
b i 255 + - BOBE8A3C FFFFFFFF Illegal Instruction
c 4 P - -+ 00000840 FFFFFFFF I1legal Instruction ﬂ
. Status Window _ 0] x|
> =
'+ Variables Wini 2 _ O] | [erniat ot : turn memory refresh back on
. SPC5
I AddVariableI AddRBgJSEIl Lt Vanihies I [Reset script (C:\Aplipemicro\pkgppcenexus starter\mpoS633m booke.mac) completed.
R - 8 Dex o dstaotod,
>REM The STARTUP.ICD macro has now run!
=
: -
Feady |

7.3 Script file setting

32/50

When running the P&E debugger for the first time, it is necessary to check and eventually
change the default script file run after reset. Click on ConfigurationAutomated script
options item to open a dialog box where you can change the initialization script in the box
Run Script after the Debugger RESETS the MCU, Figure 21. Choose
mpc5600_z0h_vle.mac script file located under installation directory. It should be
immediately visible in a file selection dialog box.

3

DoclD028073 Rev 1

AN4738

Debugging the application

7.4

3

Figure 21. Automatic script options dialog box

#. ICD Automatic Script Options

[Bun Script File when the Debugger Starts up [alwaps an:

Mame; II::'\.&pl'\pemin:rcl'\|:|kgppn::ne:-:us_starter'\startup.in::u:l
=) Full ieplap I pdate) Silent - Wi Display

[+ Fun Script File after the Debugger RESETS the MCLU:
Name;II'x|:|emin::rn:u'\pkg|:u|:|n::ne:-tus_starter'\mchEDEl_ZDh_vle.man:: |
" Full Display Update & Quiet - Mo Memory Refresh & Silent - Min Display

Default Settings

After selection of script file, you run the execution of reset command which is automatically
followed by processing of the selected script. Reset command can be issued from menu
ExecuteReset Processor or by clicking on reset button on the toolbar. You can verify the
functional debug state by changing the content of one byte in the internal memory area.
Click with right button of the mouse in the memory window 2 area, select Set Base Address
item from popup menu and fill it with a value 0x40000000. Window should be refreshed with
the memory content of that area. Now click on whatever byte inside memory window 2 area
and change the value. Data byte should change the value accordingly.

Loading application to RAM

When the steps above are functional, it is time to load the application image to the
processor. Select from the menu FileLoad Object/Debug file. A file selection dialog opens
where you choose target image file, in this case get_start_ram.elf file. If it is confirmed, the
image is downloaded to microprocessor. The download result is written in the status
window.

DoclD028073 Rev 1 33/50

Debugging the application AN4738

Figure 22. Image download status

#. Status Window O]]

=pc 40000000 :Setting PC to El1ffDwarf entry point of application.
32 source line records in 4 files.

4 symhols defined.

3111 obhject bytes loaded.

ile loaded properly.

ovwnloading object data ... Done.

ownload time was 1.33s

REM Use 'gotil main' command to run until main procedure. j
l ey |

If the download operation has been successful, you should be able to execute the code.
Write down gotil main command in status window and enter. Debugger runs the code until
the entry of the main() function where it stops. If the image is built with debugging
information in dwarf 2 format, you should see high level C language instructions in code
window 2 area, see Figure 23. If the source code is not visible, check the setting by right
click in the code window 2 and select Show Source/DisassemblyShow Source/Disassembly
item.

Figure 23. Debugger — source code

-+ Code Window 2 : Source [apptop:c). —10] x|
* Descr : Application entry point 2]
= - init peripherals
* - run infinitive loop

void main{void)
= - [
f/ init peripherals
+ s Init{);

// infinitive loop
f/ — call TIHERA event handler
f/ - tall BUTTOH4 event handler

+ o+ while (1)
{
= TIHER® Event();
5k BUTTOH4 Event(};
g 3
e

Now you should be able to step instructions, place breakpoints, run the program and do
basic debugging operations. To obtain more information about available operations and
settings, see P&E debugger help (key F1). To verify the correct functionality of the
application, click on HL button in order to let the application run without debugger
intervention. LED1 should start flashing in 500 ms intervals. LED4 follows a state of button 4
where LED4 is on when the button 4 is pressed otherwise it is off. Now you are prepared for
your own trials. You are free to modify the application functionality for example time period
for LED1 or add new features you wish and test it directly on hardware running the program
from RAM memory.

34/50 DocID028073 Rev 1 ‘Yl

AN4738 Preparing Flash image

8 Preparing Flash image
In this section you give a look at how to prepare an image that runs from Flash memory. For
that purpose you create a new project. Most of the steps you already know from previous
examples. Now you extend your knowledge with a few new things which are necessary for a
Flash image creation.

8.1 Creating get_start_rom project

Right click on GettingStarted\default.gpj in project manager and select Add Item into a
default.gpj. Select New Program, give it a name get_start_rom and select Link to and
Execute out of ROM program layout offered on consecutive pages. Based on this selection,
project manager creates new program group under default.gpj project, see Figure 24.

Figure 24. GHS — program group for Flash image

= C:AGetting5tartedidefault. gpj - MULTI Project Manager
File Edit “iew Buld Connect Debug Toolz ‘wWindows Help

kB B92C R &GHE

[Find: =] =]
M ame I Type I =
B3 GettingStartedsdefaul gpj Top Project

(B =srchget_start_ram.gp FProgram
| B0 src2iget_start_rom.gpi | Progzn .
4] tothstandalone_rormundd | Linker Directives
C3 tathresources.gpj Target Resources

=]
Building get start rom.elf
Azzsembling resetVector.ppc hecause it has changed
Linking get start rom.elf because resetWector.o has changed
Done
Build successful (Wed May 25 15:46:00 Z005) x>
Status I Infa I Carmmand IlI::'xGettingStarted\arcE\get_&tart_rDm.gpi

8.2

)

Adding application file

The next action is to add source code for the application. You use the same application as
for example in previous get_start_ram project. Right click on src2\get_start_rom.gpj line and
select Add File into get_start_rom.gpj. In File selection dialog box go to the src directory and
pick appTop.c file.

DoclD028073 Rev 1 35/50

Preparing Flash image AN4738

8.3

8.3.1

8.4

36/50

Adding ResetVector file

The ResetVector file is a new item needed in the project in order to run the application from
Flash memory. The standard startup process of the SPC560P50xx processor consists of
executing the special boot code which among other things reads specific addresses in a
Flash memory where reset configuration half word is stored together with boot reset vector
pointing to first valid instruction of the code (see the BAM chapter in the device reference
manual).

Table 4. Boot address occupation

Address Field name Description
0x0000_0000 RCHW Reset configuration half word
0x0000_0004 Reset vector Address of the first code instruction

Table 5 shows the bit definition inside the RCHW configuration word.

Table 5. RCHW bit definition
Byte O Byte 1

0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0 0 0 0 0 0 0 0 BOOTID

BOOTID — Boot identifier (fixed Ox5A value)

Due to the BAM startup sequence it is necessary to fill the two lowest addresses in the
Flash memory with correct values. For such purpose create a new assembly file
resetVector.ppc. About the content of the file see the code below.

.section ".resetvector", "vax"
.align 2# alignment to WORDS (4 bytes)

.long 0x005A0000 # startup fixed code looked for by BAM
.long 0x08# startup address (set to following address line)

The first line defines a name of the section that is used in linker directive file. The second
line specifies alignment directive and the rest of the code puts right values to addresses 0x0
and 0x4. Then it adds the resetVector.ppc file into the get_start_rom project. Right click on
src2\get_start_rom.gpj, select Add File into get_start_rom and choose resetVector.ppc.

Linker file standalone_romrun.ld

Last step before building operation is to check memory layout setting. Comparing this file to
previous linker file used in get_start_ram project, you can see two main differences:
change of code sections placement and a presence of one new section called.resetvector.
An extract from standalone_romrun.ld file is below.

MEMORY {
// 512K Internal Flash
flash rsvdl : ORIGIN = 0x00000000, LENGTH = 0

3

DoclD028073 Rev 1

AN4738

Preparing Flash image

8.5

3

flash reset : ORIGIN = ., LENGTH
flash rsvd2 : ORIGIN = ., LENGTH = 0

flash memory : ORIGIN = ., LENGTH
flash rsvd3s : ORIGIN = ., LENGTH

Il
©

512K-8

Il
o

// 40KB of internal SRAM starting at 0x40000000
dram rsvdl : ORIGIN 0x40000000, LENGTH = 0
dram_memory : ORIGIN = ., LENGTH = 40K

}

SECTIONS

{

// RAM SECTIONS
.PPC.EMB.sdata0 ABS : > dram memory
.PPC.EMB. sbss0 CLEAR ABS : >

.sdabase ALIGN(16): > dram memory
.sdata
.sbss
.data
.bss : .
.heap ALIGN(16) PAD(heap reserve)
.stack ALIGN(16) PAD(stack reserve)

vV V. V V

// ROM SECTIONS
.resetvector NOCHECKSUM: > flash reset
.text : > flash memory
.vletext:
.syscall:
.rodata
.sdataz2
.secinfo : >
.fixaddr : >
.fixtype

VvV V. Vv V

.CROM.PPC.EMB.sdata0 CROM (.PPC.EMB.gdatal) : >
.CROM. sdata CROM(.sdata) : >
.CROM.data CROM(.data) : >

Building the Flash image

Before starting the build process, set the following project parameters:

1. A name of the image get_start_rom.elf

2. The support for debug symbols in dwarf 2 format

3. Preprocessor constant for compilation BUILD_TO_FLASH

The set of the parameters can be done via build options dialog opened from the menu
EditSet Build Options when the src2\get_start_rom.gpj line inside project manager
window is highlighted. The image name is modified in ProjectOutput Filename section.

Dwarf 2 support option is set in AdvancedDebugging OptionsNative Debugging Options
section and preprocessor constant is set in PreprocessorDefine Preprocessor Symbol.

DoclD028073 Rev 1 37/50

Preparing Flash image AN4738

38/50

Preprocessor constant BUILD_TO_FLASH controls including of
__ghs_board_memory_init() function into the image which takes care of internal RAM and
its companion ECC module initialization. The SRAM initialization sequence consists of
multiple 32-bit writes to SRAM which initialize error correction unit with proper values. Once
the project is properly set up, start the building process by pressing the F7 key. The status of
the process is shown in status window present below inside MULTI environment. Everything
should be ok but if for any reason it is not, read error messages and fix errors accordingly.
The result of successive build operation is the generation of image file get_start_rom.elf
under default project directory.

3

DoclD028073 Rev 1

AN4738

Programming Flash image

9

9.1

Programming Flash image

Last step of get_start_rom example is to program it into the internal Flash memory of the
processor. P&E’s debugger tool provides such a possibility. At first it needs to establish a
debug connection by starting ICDPPCNEXUS program, selecting the right connection
method and clicking on connect button.

High level load

Once the debug mode is activated, click on the high level load icon in the toolbar that opens
File Load Dialog (Figure 26) with several options and input boxes

Figure 25. Flashing — high level load

-+ ICDPPCNEXUS Debugaoer - Yersion 1.16
File Esecute Configuiaton ‘Windows Help

| FElE B g =]

ol o]]| e

Caution:

)

Here select an image file to program and be sure to select the “Program binary image into
Flash using default Algorithm for Selected Device” check box. This option selects the
default program algorithm.

If the program algorithm is selected manually, choosing the wrong programming algorithm
can damage the Flash and censorship state of the microcontroller.

Then load get_start_rom.elf file.

DoclD028073 Rev 1 39/50

Programming Flash image ANA4738

Figure 26. Flashing — load dialog

& SPC560Pxx

File Optionz

f¢ Load a single debug/binary file

Binary Code Image - Load Options
™ Dawnload binany image to MCU R am

" Program binary image into Flash using Algorithm : | J

Load File : |C:\GettingStarted\get_start_rnm.elf Browsze

!
|

T

(+ Program binary image into Flash using default Algonithen for Selected Deviee [SPCSBDPSD [Autocietected) -

v After successiul load, execute untl main(] procedure
[Force Flazh programmer to remain open upon success

o Process Load Command x Cancel

9.2

40/50

Programming an image

Check that the base address of the Flash memory input box is set to 0x0. Then the Flash
memory starts programming. The programming operation consists of two steps:

1. Memory erase
2. Program operation

Both operations are provided by a separate application, P&E programmer, called
automatically from the P&E debugger. When the programming operation is finished the P&E
debugger executes reset followed by the execution of configuration script. Programming is
stopped on the first instruction of the code, here an address 0x8. Now issue a command
gotil in the main status window which executes the program from Flash memory until entry
of main() function where it stops. Now the program placed in Flash memory can run even
without a debugger. The simplest test is to disconnect the debugger and press the reset
button on the SPC560P50xx mini-module board. After that the program starts to execute
from the internal Flash memory and you should see LED1 flashing in predefined time
interval and change of LED4 state when button 4 is pressed and released.

3

DoclD028073 Rev 1

AN4738 Summary

10 Summary

This tutorial is issued to prepare projects, to define which files are necessary to write the
simplest application, how to build it into an image that you can debug or run independently.
It shows what is different between preparing an image to be executed from RAM and an
image to be run from Flash memory. The last argument treated is how to program data into
internal Flash memory of the microcontroller by means of P&E debug tool. From now on,
you should be able to prepare your own program for SPC560P50xx microcontroller that you
can debug directly on the hardware evaluation board.

3

DoclD028073 Rev 1 41/50

appTop.c AN4738

Appendix A appTop.c

/**

*kkkkkkkkk*k

* FILE : appTop.c

* DESCRIPTION : GettingStarted example without interuppts
* VERSION : 1.0

* RESOURCES : - INTERRUTPS = no interrupts

* - CLK = crystal in bypass mode (12 MHz)

* HISTORY : first version

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkdkhkdhkhkdhkhkkdhkhkkhhkhkhhkdkhhkdkkhkhkdkhkdkhkdkk,x*x*

*********/

#include "..\spcHeaders\jdp 0100.h"

/**

*kkkkkkkkk*k

* Name : _ ghs board memory init

* Descr : Called from GHS startup routine to enable user setup
of important

* resources before execution of startup operations

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhkhkhkkhhkhkdkhkdhkhkdhkhkdhkhkkhhkhkkhhkdkhhkdkkhkdkhkdkhkdkk,x*x*%

********/

#ifdef BUILD TO FLASH

void _ ghs board memory init (void)
{
// RAM memory initialization
#pragma asm
e lis r6, 0x4000
e or2i re6, 0x0000
e 1lis 7, 0x4000
e or2i r7, Ox9FFF

init ram loop:

e stmw r0,0(xr6)

e addi r6,r6,128

se cmp r6,r7

e blt cr0,init ram loop
#pragma endasm

#endif //BUILD TO FLASH

/**
*kkkhkkkkkkk*k
* Name : Init

* Descr : Initialization of CPU peripherals
ERE R R RS EE SR EEEEESE LSRR RS EEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEES

*********/

42/50 DocID028073 Rev 1 ‘Yl

AN4738 appTop.c

void Init (void)

// mode & peripheral enable

ME.RUNPC[1] .B.RUNO = 1; // prepare configuration word

ME.PCTL[92] .B.RUN CFG = 1; // and use it for PIT enable in
RUNO mode

// mode transition request

ME.MCTL.R = 0x40005AFO0;

ME.MCTL.R = 0x4000A50F;

while (ME.GS.B.S_CURRENTMODE = 4) ; // wait for DRUN->RUNO
transition

3

// PIT timer configuration

PIT.PITMCR.R = 1; // enable periph. & stop timer
during debug

PIT.CH[O0] .LDVAL.R = 0x7A1200; // reload value

PIT.CH[O] .TFLG.B.TIF = 1; // clear potential flag

PIT.CH[O0] .TCTRL.B.TEN = 1; // enable timer

// GPIO configuration

SIU.PCR[52] .R = 0x0200; // enable output for LED1
SIU.PCR[51] .R = 0x0100; // enable input for BUTTON4
SIU.PCR[55] .R = 0x0200; // enable output for LED4

// disable SWT

SWT.SR.B.WSC = 0xC520; // clear soft lock sequence
SWT.SR.B.WSC = 0xD928;
SWT.CR.B.WEN = 0; // disable watchdog

}

/**

kkkkkkkkk*k

* Name : TIMERO_Event
* Descr : Action linked to PIT Channel [0] event
* - Toggle with LED1 (pin 58)

kkhkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhkhkhkdhkhkdhkhkdhkhkkdhkhkkhhkhkkhhkdkhkhkdkkhkhkdkhkdkhk*kk*x*x*%

*********/

void TIMERO_ Event (void)

{
// wait for timer flag signalling expiration
// then toggle with pin and clear flag by writing '1'
if (PIT.CH[O0] .TFLG.B.TIF)
{
SIU.GPDO[52] .B.PDO = ~SIU.GPDO[52] .B.PDO;
PIT.CH[O] .TFLG.B.TIF = 1;
}
}

/**

kkkkkkkkk*k

* Name : BUTTON4_Event

DoclD028073 Rev 1 43/50

appTop.c

AN4738

44/50

* Descr : Action linked to Input pin from Button4
* - Light on LED4 when button4 is pressed
ERE R R RS EESEEEEEESE LSRR RS EEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEES
*********/
void BUTTON4 Event (void)
{
if (SIU.GPDI[51].B.PDI == 0)
SIU.GPDO[55] .B.PDO = 0
else
SIU.GPDO[55] .B.PDO = 1;

}

/**
*kkkkkkkk*k

* Name : main

* Descr : Application entry point

* - init peripherals

- run infinitive loop

ERE R R RS EESEEEESEESEEEEEEEEEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEES

*

*********/

void main(void)

{
// init peripherals
Init () ;

// infinitive loop
// - call TIMERO event handler
// - call BUTTON4 event handler
while (1)
{

TIMERO_ Event () ;

BUTTON4 Event () ;

3

DoclD028073 Rev 1

AN4738

resetVector.ppc

Appendix B resetVector.ppc

3

/**

*kkkkkkkkkkk*k

* %

* %

* %

* %

* %

FILE: STARTUP.PPC

DESCRIPTION:
reset vector constants used by BAM

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkdkhkdhkhkdhkhkdhkhkkhhkhkhhkdkhkhkdkkhhkdkhkdkhkdkk*xx*%

*********/

/*

CODE section aligned to words (4 bytes) */

.section ".resetvector", "vax"

.align 2 # alignment to WORDS (4 bytes)

.long 0x0000005A # startup fixed code looked for by BAM
.long 0x08# startup address (set to following address line)

DoclD028073 Rev 1

45/50

standalone_ram.Id

AN4738

Appendix C

46/50

MEMORY {

standalone_ram.Ild

// 512K Internal Flash

flash rsvdl
flash reset
flash rsvd2
flash memory
flash rsvd3

ORIGIN = 0x00000000, LENGTH = 0

ORIGIN = ., LENGTH = 8
ORIGIN = ., LENGTH = 0

ORIGIN = ., LENGTH = 512K-8
ORIGIN = ., LENGTH = 0

// 40KB of internal SRAM starting at 0x40000000

dram rsvdl

dram_ memory
DEFAULTS

stack reserve

heap reserve =

//
// Program layout

//

SECTIONS

{

ORIGIN = 0x40000000, LENGTH = O
ORIGIN = ., LENGTH = 40K

= 4K

2K

for running out of RAM.

.PPC.EMB.sdata0 ABS : > dram memory

.PPC.EMB. sbss0

.text
.vletext
.syscall

CLEAR ABS

> dram_memory
>
>

.resetvectorNOCHECKSUM H

.secinfo
.rodata
.sdata2
.fixaddr
.fixtype : >

.sdabase
.sdata
.sbss
.data
.bss
.heap
.stack

vV V. V V

>
>

ALIGN(16) : > dram memory

ALIGN(16) PAD(heap reserve)
ALIGN(16) PAD(stack reserve)

>

// These special symbols mark the bounds of RAM and ROM memory.
// They are used by the MULTI debugger.

//
_ ghs_ramstart
__ghs_ ramend

MEMADDR (dram_rsvdl) ;
= MEMENDADDR (dram_memory) ;

DoclD028073 Rev 1

3

AN4738

standalone_ram.Id

3

__ghs romstart MEMADDR (flash rsvdl) ;
__ghs_romend = MEMENDADDR (flash rsvd2) ;

}

Appendix D - standalone romrun.ld
MEMORY {

// 512K Internal Flash

flash rsvdl : ORIGIN = 0x00000000, LENGTH = O
flash reset : ORIGIN = ., LENGTH = 8

flash rsvd2 : ORIGIN = ., LENGTH = 0

flash memory : ORIGIN = ., LENGTH = 512K-8
flash rsvd3 : ORIGIN = ., LENGTH = 0

// 40KB of internal SRAM starting at 0x40000000

dram_ rsvdl : ORIGIN = 0x40000000, LENGTH = O
dram memory : ORIGIN = ., LENGTH = 40K

}

DEFAULTS

stack reserve = 4K
heap reserve = 2K

//
// Program layout for starting in ROM, copying data to RAM,
// and continuing to execute out of ROM.

//

SECTIONS

{

//

// RAM SECTIONS

//
.PPC.EMB.sdata0 ABS : > dram_memory
.PPC.EMB. sbss0 CLEAR ABS : >
.sdabase ALIGN(16): > dram memory
.sdata : >
.sbss o>
.data H
.bss To> .
.heap ALIGN(16) PAD(heap reserve) : >
.stack ALIGN(16) PAD(stack reserve) : >

//

// ROM SECTIONS

//

DoclD028073 Rev 1

47/50

standalone_ram.Id

AN4738

.resetvectorNOCHECKSUM: > flash reset
.text : > flash memory

.vletext: >

.syscall:

.rodata : >
.sdata2

.secinfo : >
.fixaddr : >
.fixtype : >

.CROM.PPC.EMB.sdata0 CROM(.PPC.EMB.sdatal) : >
.CROM. sdata CROM(.sdata) : >
.CROM.data CROM (.data) : >

//

// These special symbols mark the bounds of RAM and ROM memory.

// They are used by the MULTI debugger.

//
__ghs ramstart = MEMADDR (dram rsvdl) ;
__ghs ramend = MEMENDADDR (dram_memory) ;
__ghs romstart = MEMADDR (flash rsvdl) ;
__ghs_romend = MEMENDADDR (flash rsvd2) ;
/7

// These special symbols mark the bounds of RAM and ROM images of

boot code.

// They are used by the GHS startup code (_start and

__ghs_ind crto0).

/7
__ghs rambootcodestart = 0;
__ghs rambootcodeend = 0;
__ghs rombootcodestart = ADDR(.text);
__ghs rombootcodeend = ENDADDR (.fixtype) ;
}
48/50 DoclD028073 Rev 1

3

AN4738

Revision history

Revision history

3

Table 6. Document revision history

Date

Revision

Changes

09-Jul-2015

1

Initial release

DoclD028073 Rev 1

49/50

AN4738

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

50/50 DoclD028073 Rev 1

	1 Prerequisites
	Table 1. Prerequisites table

	2 Glossary / Terminology
	Table 2. Abbreviations and acroynms

	3 Creating a project
	Figure 1. MULTI Project Manager
	3.1 Defining a project
	Figure 2. Project wizard – name selection
	Figure 3. Project Wizard - operating system selection
	Figure 4. Project Wizard - processor and hardware selection

	3.2 Defining a program content
	Figure 5. Project Manager - selection of project type
	Figure 6. Project Manager - name and directory setting
	Figure 7. Program Manager - program layout
	Figure 8. Final project structure

	4 Creating an application
	Figure 9. Application scheme

	5 Building the project
	5.1 Adding new files to the project
	Figure 10. Building a project – adding source file
	Figure 11. Building a project – structure after adding source file

	5.2 Build options
	Figure 12. Building a project – build options
	Figure 13. Building a project – Modified Options tab

	5.3 Linker directive file
	5.4 Compile and build

	6 Hardware setup
	Figure 14. Hardware - SPC560P50xx evaluation board
	6.1 Power setup
	Figure 15. Hardware - power block setting

	6.2 LED setup
	Figure 16. Hardware – LEDs setting

	6.3 Button setup
	Figure 17. Hardware – buttons setting

	6.4 Mini-module setup
	Figure 18. SPC560P50xx mini-module setting
	Table 3. SPC560P50xx mini-module setting

	7 Debugging the application
	7.1 Debug connection
	Figure 19. Connection manager

	7.2 Debug IDE default layout
	Figure 20. Default layout

	7.3 Script file setting
	Figure 21. Automatic script options dialog box

	7.4 Loading application to RAM
	Figure 22. Image download status
	Figure 23. Debugger – source code

	8 Preparing Flash image
	8.1 Creating get_start_rom project
	Figure 24. GHS – program group for Flash image

	8.2 Adding application file
	8.3 Adding ResetVector file
	Table 4. Boot address occupation
	Table 5. RCHW bit definition
	8.3.1 BOOTID – Boot identifier (fixed 0x5A value)

	8.4 Linker file standalone_romrun.ld
	8.5 Building the Flash image

	9 Programming Flash image
	9.1 High level load
	Figure 25. Flashing – high level load
	Figure 26. Flashing – load dialog

	9.2 Programming an image

	10 Summary
	Appendix A appTop.c
	Appendix B resetVector.ppc
	Appendix C standalone_ram.ld
	Revision history
	Table 6. Document revision history

