

Features

- Reduction in mounting process & costs
- · Save PCB space.
- Reduction of inventory control costs.

Applications

- Computer
- Printer
- Hard Disk Drive
- CD-ROM

How to Order

 $\frac{\mathsf{CRA3A}}{\boxed{1}}\,\frac{\mathsf{4E}}{\boxed{2}}\,\,\frac{\mathsf{103}}{\boxed{3}}\,\,\overline{\boxed{4}}\,\,\overline{\boxed{5}}$

1)Series

2Number of elements(4E: 4 elements)

③Resistance value (3 digits), Chip Jumper Arrays: 000

4 Tolerance

J	±5%
Blank	Chip Jumper Arrays

5Packaging

T Paper Taping, 5,000pcs/reel

• 4 Elements Array

CRA3A4E seriesCRB3A4E series

Convex Scallop type Concave type

- CRC3A4E series

Convex Corner type

Rating

Chip resis	tor arrays	Chip jumper arrays		
Chip resis	itor arrays	Chip jumper arrays		
Item	Rating Item		Rating	
Rated power(70°C)*	1/16W element			
Max working voltage	50V	Rated current	1A	
Max Over-load voltage	100V			
Resistance value	J : 10Ω to $2.2M\Omega$	Conductive	50mΩmax	
Tolerance	J ±5% resistance value		Johnsenax	
Working Temperature	−55 to +125°C			
Number of elements	4E: 4 Elements			

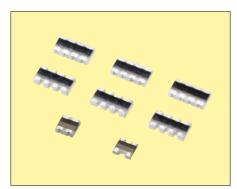
^{*}Rated Voltage : 50V or \(\sqrt{Rated power \times Resistance value} \), whichever is less.

Dimensions (Unit:mm)

		4 elements CRA3A4E series	4 elements CRB3A4E series	4 elements CRC3A4E series
	Shape	C T	D D D D D D D D D D D D D D D D D D D	
(mm)	W	1.60±0.15	1.60±0.15	1.60±0.15
٤	L	3.20±0.15	3.20±0.15	3.20±0.15
Suc	С	0.30±0.20	0.30±0.20	0.30±0.20
nsic	d	0.20±0.15	0.40±0.15	0.20±0.15
Dimensions	Т	0.50±0.10	0.60±0.10	0.50±0.10
٥	р	0.8typ	0.8typ	0.8typ

Detailed specifications are available on request.

Chip Resisitor Arrays have several resistor elements integrated as a single component.


^{*}Standard Resistance Value: E-12 Series

^{*}For non standard value, optional please contact us.

Chip Resistor Arrays (CRB 2A4E, CRC 2A4E, CRB11A2E, CRC11A2E Series)

How to Order

Miniature chip resistor arrays have 4 and 2 resistor elements integrated as a single component.

Features

- Miniture (2.0×1.0mm) Resistor Arrays Max 60% space saving compared with the use of standard chip array (3.2×1.6mm)
- 0.5mm Termination pitch (Same as IC leadpin pitch)

Easy designing of pattern layout and improve electrical characteristics for curcuit

CRB2A4E series (☐ Termination) CRC2A4E series (☐ Termination) CRB11A2E series (☐ Termination) CRC11A2E series (☐ Termination)

(CRB11A: 1.0×1.0mm, ☐ termination) (CRC11A: 1.0×1.0mm, ☐ termination) ②Number of elements(4E: 4 elements)

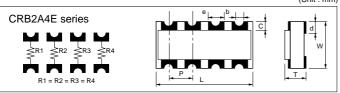
 $\overline{2}$ $\overline{3}$ $\overline{4}$ $\overline{5}$

①Series(CRB2A: 2.0×1.0mm, Utermination) (CRC2A: 2.0×1.0mm, Ltermination)

CRB2A <u>4E</u> 103 J H

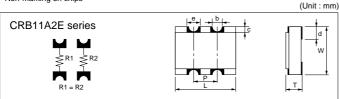
- 4 Tolerance

J	±5%	Blank	Chip Jumper Array


⑤Packaging

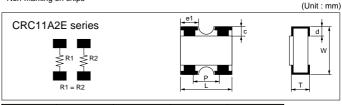
Code	Form	Material	Packing unit
Н	Taping	Paper	10000pcs/reel

• 2mm pitch taping



Code	L	W	Т	Р	b
Dimensions	2.0 +0.10 -0.10	1.0 +0.10 -0.10	0.4 +0.10	0.5typ	φ0.15typ
Code	С	d	е		
Dimensions	0.2 +0.15	0.25 +0.15	0.25typ		

Non-marking on chips


Code	L	w	Т	Р	b
Dimensions	1.00 +0.10	1.00 +0.10	0.40 +0.10	0.50typ	φ0.15typ
Code	С	d	е		
Dimensions	0.20 +0.15	0.25 +0.15	0.25typ		

Non-marking on chips

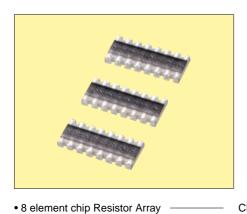
CRC2A4E series R1 = R2 = R3 = R4

Code	L	W	T	Р
Dimensions	$2.0^{+0.10}_{-0.10}$	1.0+0.10	$0.4^{+0.10}_{-0.10}$	0.5typ
Code	С	d	e 1	e 2
Dimensions	0.15+0.15	0.25+0:15	0.3+0.10	0.4+0.10

Non-marking on chips

Code	L	W	Т	Р
Dimensions	$1.00^{+0.10}_{-0.10}$	$1.00^{+0.10}_{-0.10}$	$0.35 \substack{+0.05 \\ -0.05}$	0.65typ
Code	С	d	e 1	
Dimensions	0.20+0:15	0.20 +0:15	0.33 +0:18	

Non-marking on chips


Rating

Chip res	istor arrays	Chip jumper array		
Item	Item Rating		Rating	
Rated power(70°C)	1/32W/element			
Max working * voltage	25V	Rated current	1A	
Max Over-load voltage	50V			
Resistance value	10 Ω to 1M Ω	Conductive	50mΩmax	
Tolerance	J: ±5% resistance value		Sumsimax	
Working Temperature	−55 to +125°C			
Number of elements	4E : 4E	Elements, 2E : 2El	ements	

- * Rated Voltage : $\sqrt{\text{Rated power} \times \text{Resistance value}},$ whichever is less.
- * Standard Resistance Value: E-6 Series
- * Please contact sales engineer for any other requirements of the nominal resistance value and the tolerance.

Features

• 0.5mm termination pitch(same as IC lead-pin pitch).

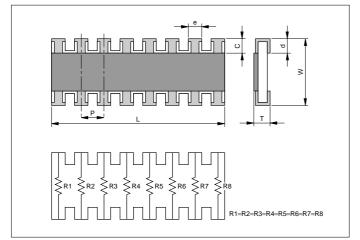
Easy designing of pattern layout and improve electrical characteristics for circuit. 3.8mm length of the chip makes the assembly of the next chip possible without changing the pattern pitch.

CRC4A8E series (凸 Termination)

How to Order

 $\frac{\mathsf{CRC4A}}{\boxed{1}} \; \frac{\mathsf{8E}}{\boxed{2}} \; \frac{103}{\boxed{3}} \; \frac{\mathsf{J}}{\boxed{4}} \frac{\mathsf{T}}{\boxed{5}}$

- ①Series CRC4A
- ②Number of elements 8E = 8 elements
- 3 Resistance value3 digits numbering
- 4 Tolerance


J ±5%

⑤Packaging

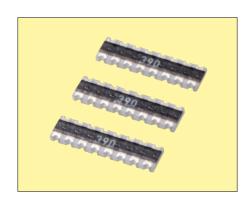
Taping paper 5,000pcs/reel

Dimensions

(Unit : mm)

Code	L	W	Т	Р	С
Dimensions	3.8±0.1	1.6±0.1	0.45±0.1	0.5typ	0.3±0.2
Code	d	е			
Dimensions	0.3±0.15	0.3±0.1			

No marking on chips.


Rating

Chip Resistor Arrays			
Item	Rating		
Poted newer/70°C)	1/16W/element		
Rated power(70°C)	1/4W/packege		
Max working voltage*	25V		
Max over-load voltage	50V		
Resistance value	10 Ω to 1M Ω		
Torerance	J:±5%		
Working temperature	−55 to +125°C		
Number of elements	8E:8elements		

- * Rated Voltage : √Rated power × Resistance value, whichever is less.
- * Standard Resistance Value: E-6 Series
- * Please contact sales engineer for any other requirements of the nominal resistance value and the tolerance.

Features

 Equal length conductors can be traced out from 0.8mm pitch termination.
 Also, good matching at low impedance.

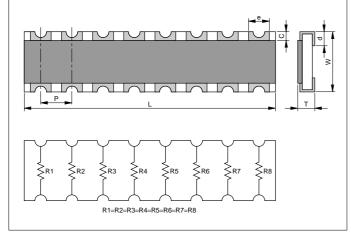
How to Order

 $\frac{\mathsf{CRB6A}}{1} \; \frac{\mathsf{8E}}{2} \; \frac{\mathsf{390}}{3} \; \frac{\mathsf{G}}{4} \; \frac{\mathsf{U}}{5}$

- ①Series CRB6A
- ②Number of elements 8E = 8 elements
- 3 Resistance value3 digits numbering
- 4 Tolerance

G ±2%

⑤Packaging


U Taping plastic 4,000pcs/reel

• 8 element chip Resistor Array

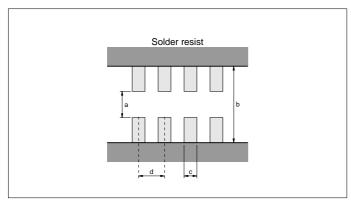
CRB6A8E series (☐ Termination)

Dimensions

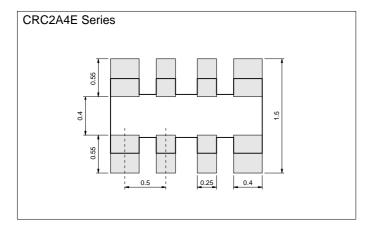
(Unit:mm)

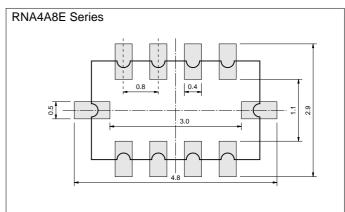
Code	L	W	Т	Р	С
Dimensions	6.4±0.2	1.6±0.2	0.6±0.1	0.8typ	0.3±0.2
Code	d	e(Top side)	e(Bottom side)		
Dimensions	0.4±0.15	0.5±0.1	0.4±0.15		

Rating


Chip Resistor Arrays		
Item	Rating	
Rated power(70°C)	1/16W/element	
Max working voltage*	50V	
Max over-load voltage	100V	
Resistance value	10 Ω to 1M Ω	
Torerance	G:±2%	
Working temperature	–55 to +125°C	
Number of elements	8E:8elements	

- * Rated Voltage : √Rated power × Resistance value, whichever is less.
- * Standard Resistance Value: E-6 Series
- * Please contact sales engineer for any other requirements of the nominal resistance value and the tolerance.




Recommended Land Patterns is referred the following for example

(Unit : mm)

Series	а	b	С	d
CRA3A4E	0.8	2.4	0.4	0.8
CRB3A4E	0.7	2.3	0.4	0.8
CRC3A4E	0.8	2.4	0.4	0.8
CRB2A4E	0.4	1.5	0.25	0.5
CRB11A2E	0.4	1.5	0.25	0.5
CRC11A2E	0.5	1.5	0.4	0.65
CRC4A8E	0.8	2.4	0.3	0.5
CRB6A8E	0.7	2.3	0.4	0.8
ATC1A	0.5	1.5	0.4	0.65

Electrical Characteristics

Item		Standard			Test Conditions	
		Resistor		Jumper	Resistor	Jumper
DC Resistance		Within Initial Tolerance		50mΩmax	Power Contdition A (20°C, 65%RH)	
Temperature Characteristics		Resistance(Ω) TCR(ppm/°C) *D, F 10≤R≤1M -100 to +100 J, CR05:F R <10 -100 to +600 10≤ R ≤1M -250 to +250 1M< R -500 to +300 *Except CR05			Test Temperature: $25,125(^{\circ}C)$ $\Delta R/R = R_2 - R_1/R_1 \times 1/T_2 - T_1 \times 10^6$ $\Delta R/R$: Temp. Coefficient (ppm/ $^{\circ}C$) T_1 : $25(^{\circ}C)$ T_2 : $125(^{\circ}C)$ R_1 : T_1 Resistance at (Ω) R_2 : T_2 Resistance at (Ω)	
Short-time Overload	ΔR/R	\pm (2.0%+0.10 Ω)max of the intial value		50mΩmax	(1) Apply 2.0×rated voltage for 5sec. (2.5×rated voltage for Arrays) (2) Wait 30minutes (3) Measure resistance CR03: 30Vmax CR05: 50Vmax CR10: 100Vmax CR21: 200Vmax CR32: 400Vmax CR34, CRB3A, CRC3A:	(1) 2A for 5sec. (CJ03: 1A) (2) Wait 30minutes (3) Measure resistance
	Visual	No evidence of mechanical da intermittent overload			100V max	
Intermittent Overload	Δ R/R	±(5%+0.1Ω)max of the intial value No evidence of mechanical da		50mΩmax	(1) Perform 1000voltage cycles as follows: ON(2.0×rated voltage, 2.5×for Arrays) 1sec. OFF 25sec. (2) Stabilization time 30min without loading (3) Measure resistance CR03: 30Vmax CR05: 50Vmax	(1) Perform 10000 current cycles as follows: ON(2A) 1sec. OFF 25sec. (2) Wait 30minutes (3) Measure resistance CJ03: 1A max
	Visual			damage	CR10: 100Vmax CR21: 200Vmax CR32: 400Vmax CRA3A, CRB3A, CRC3A : 100V max	
Dielectric Withstanding Voltage		No evidence of mechanical damage		Apply 500VAC for 1min (CR10 300VAC) (CR05, CRA3A, CRB3A, CRC3A 300VAC/1sec.		
Insulation Resistance		■CR03, CJ03: 10 ⁸ Ωmin ■CR05, CJ05: 10 ⁸ Ωmin ■CR10, CJ10: 10 ⁹ Ωmin ■CR21, CJ21: 10 ¹⁰ Ωmin ■CR32, CJ32: 10 ¹² Ωmin ■CR3A, CRB3A, CRC3A: 10 ⁹ Ωmin		:10 ⁹ Ωmin	Apply 500V DC. (CR05, CRA3A, CRB3A, CRC3 CR03 50VDC)	A 100V DC

Mechanical Characteristics

Item		Stan	dard	Test Conditions	
		Resistor Jumper		Resistor	Jumper
	∆R/R	\pm (1%+0.05Ω)max of the intial value 50mΩmax		Apply the load as show: Measure resistance during load application	
Terminal Strength	Visual	No evidence of mechanical damage after loading		Bending in 10seconds	Unit: mm (95) +2max 45
				PC board: Glass epoxy t=1.6	
Soldering Heat	or the milian range		50mΩmax	Immerse into molten solder at 260±5°C for 10±1sec. Stabillize component at room temperature for 1hr. Measure resistance.	
Resistance	Visual	No evidence of leaching			
Solderability		Coverage ≥95% each termination end		Immerse in Rogin Flux for 2±0.5 sec. and in SN62 solder at 235±5°C for 2±0.5 sec.	
Anti-Vibration	or the initial value		50mΩmax	sweep in 1min.at 1.5mm amplitude.	
Test	Visual	No evidence of mechanical damage			
Solvent	∆R/R	$\pm (0.5\% + 0.05\Omega)$ max of the intial value	50mΩmax	Immerse in static state but for 30±5sec.	
Resistance Visual		No evidence of mo	echanical damage	Stabillize component at room temperature for 30min then measure Value.	

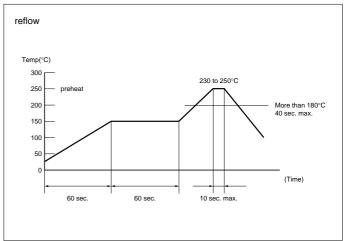
Environmental Characteristics

ltem		Stan	dard	Test Conditions		
		Resistor	Jumper	Resistor	Jumper	
Temperature	∆R/R	\pm (1%+0.05 Ω)max of the intial value	50mΩmax	1) Run 5cycles as follows: 125±3°C for 30min. Roc	om temp for 10-15min.	
Cycle	Visual	No evidence of me	echanical damage	Stabilize component at room temperature for 1hr. then measure value.		
Low Temperature	of the intial value		50mΩmax	1) Dwell in -55°C chamber without loading for 1000±68 hrs.		
Storage	Visual	No evidence of me	echanical damage	 2) Stabilize component at room temperature for 1hr. then measure value. 		
High Temperature	∆R/R	$\pm (3\% + 0.1\Omega)$ max of the intial value	50mΩmax	Dwell in 125°C chamber without loading for 1000 hrs. Stabilize component at room temperature for 1hr		
Storage	Visual	No evidence of me	echanical damage	then measure value.		
Moisture Resistance	∆R/R	$\pm (3\% + 0.1\Omega)$ max of the intial value	50mΩmax	1) Dwell in temp: 65°C RH90 to 95%RH chamber without loading for 1000½8 hrs.		
Resistance	Visual	No evidence of mechanical damage		Stabilize component at room temperature for 1hr. then measure value.		
∆R Life Test	∆R/R	$\pm (3\% + 0.1\Omega)$ max of the intial value	50mΩmax	1) Temp: 70±3°C Voltage off 30min. Duration: 10	00 ⁺⁴⁸ hrs.	
	Visual	No evidence of mechanical damage		 2) Stabilize component at room temperature for 1hr. then measure value. 		
Loading Life	∆R/R	$\pm (3\% + 0.1\Omega)$ max of the intial value	50mΩmax	min(rated voltage) off 30	95% Voltage Cycle: on 90 Omin. Duration: 1000 ⁴⁸ hrs.	
iii woisture	Visual	No evidence of mechanical damage		Stabilize component at room temperature for 1hr. then measure value.		

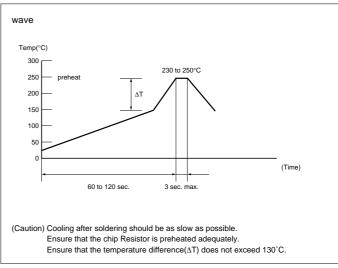
Circuit design

- Once application and assembly environments have been checked, the resistors may be used in conformance with the catalog and the specifications.
- 2) Please consult the manufacturer in advance when the resistors is used in devices such as: devices which deal with human life, I.e. medical devices; devices which are highy public orientated; and devices which demand a high standerd of liability.
- Please use the resistors in conformance with the operating temperature provided in both the catalog and the specifications.
- Please keep voltage under the rated voltage which is applied to the resistor.
- 5) Do not use the resistor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
- 6) Please do not use the resistor in the following environments.
 - 1)State that water, oil, and solvent hang in resistor
 - 2 State where poisonous gas (sulfur and chlorine, etc.) exists
 - $\begin{tabular}{ll} \hline \end{tabular} \textbf{3} \textbf{State that direct sunshine, radiation, and ultraviolet, etc. are irradiated} \\ \\ \hline \end{tabular}$
- 7) There is a thing that resistance changes according to the stuff of the resin when the coating with the resin is given.
 - Please use resin coating after confirming the characteristic.
- 8) There is a thing that resistance changes according to flux and cleaner.
 - Please use flux and cleaner after confirming the characteristic.
- 9) Please consult about a lead free products.

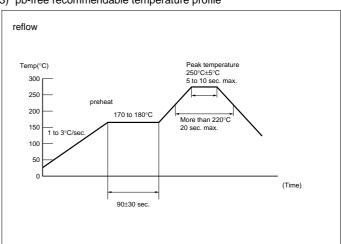
Storage


- Keep storage place temperature +5 to +35°C, humidity 45 to 75% RH.
- 2) Please keep parts out of poisonous gas such as sulfur or chlorine in the air, and out of salty moisture. Or they may cause rust of terminal, and poor solderability. and, please consider the abovementioned item after mounting your company.
- 4) Soldering iron

Temperature	soldering iron 300±5°C *
Time	3 sec. max. *


^{*}Do not place the soldering iron on the chip. Soldering iron is 30W $\ensuremath{\mathsf{max}}$

Soldering method


1) Recommendable temperature profile

2) Recommendable temperature profile

3) pb-free recommendable temperature profile

