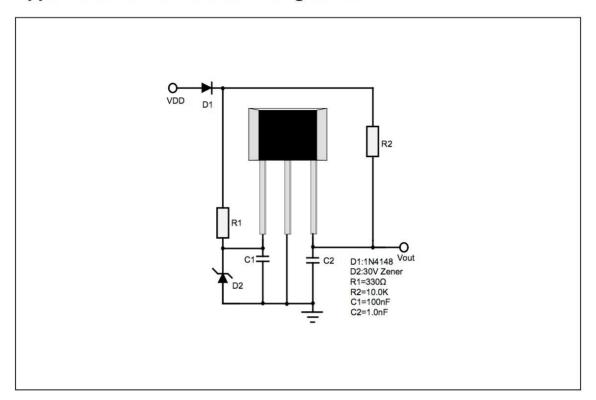


Features

- High sensitivity
- Digital output signal
- Zero speed detection
- Short circuit protection
- Insensitive to orientation
- Wide voltage working range
- Self-adjusting magnetic range
- On-chip 12 bit A/D converter
- High speed operation
- No chopper delay applications
- RoHS compliant

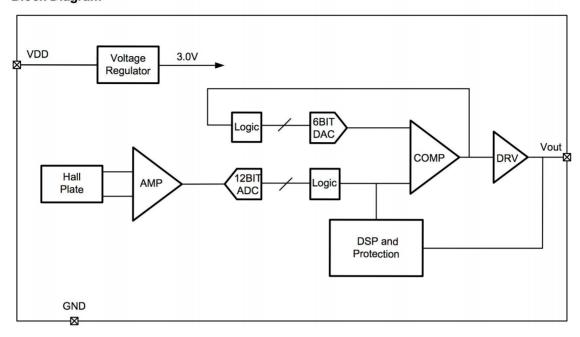
SIP-3

Application


- Camshaft sensor
- Gear tooth sensor
- Speed sensor
- Direction detection

The HL900G is a sophisticated IC featuring an on-chip 12-bit A/D Converter and logic that acts as a digital sample and hold circuit . A separate 6-bit D/A converter provides a fixed hysteresis . The HL900G does not have a chopper delay . The HL900G uses a single Hall plate which is immune to rotary alignment problems . The bias magnet can be from 1000GS to 4000Gs . As the signal is sampled, the logic recognizes an increasing or decreasing flux density.

The output will turn on (BOP) after the flux has reached its peak and decreased by an amount equal to the hysteresis. Similarly the output will turn off (BRP) after the flux has reached its minimum value and increased by an amount equal to the hysteresis.


Application Circuit and Pin Configuration

Number	Name	Function
1	VDD	Connects power supply to chip
2	GND	Ground terminal
3	Vout	Signal Output

Block Diagram

Absolute Maximum Rating

Parameter	Limit Values			
	Min.	Max.		
Supply Voltage (Operating), VDD	-0.3V	30V		
Output Voltage, Vo	-0.3V	30V		
Supply Current (Fault), IDD		50mA		
Output Current (Fault), IOUT		30mA		
Output Current (Fault), Ifault		200mA		
Junction temperature, T _J (5000h)		150°C		
Junction temperature, T _J (2000h)		160°C		
Junction temperature, T _J (1000h)		170°C		
Junction temperature, T _J (100h)		180°C		
Operating Temperature Range, TA	- 40°C	150°C		
Storage Temperature Range, Ts	- 65°C	150°C		

ESD Protection

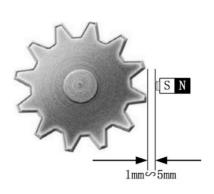
Human Body Model (HBM) tests

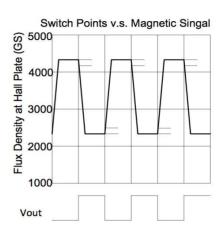
Parameter	Symbol	Max.	Unit	Note
ESD V _{ESD}		8	kV	According to standard
				EIA/JESD22-A114-B HBM

Electrical Specifications

DC Operating Parameters TA = -40°C to 150°C, VDD = 4.0V to 30V (unless otherwise specified)

Parameter	Symbol Test Conditions		Min	Тур	Max	Unit
Supply Voltage	V _{DD}	Operating	4.0	12	30	٧
Supply Current	IDD	V _{DD} = 12V	1.5	3.0	4.5	mA
Power-Up State	POS	VDD > VDD(min)	Н	Н	Н	
Supply Current	IDD	V _{DD} = 4.0V to 30V	1.0		6.0	mA
Leakage Current	ILEAK	Vout = 4.0V to 30V			10	uA
Output Current	louт	Operating			25	mA
Output Saturation Voltage	VSAT	V _{DD} = 12V, I _{OUT} = 25 mA			600	mV
Output Current Limit	Limit	V _{DD} = 12V	50	100	150	mA
Output Short Circuit Shutdown	TFAULT	Fault	10		20	uS
Clock Frequency	Fclk	Operating	400	500	600	KHz
Output Rise Time	Tr	V _{DD} =12V, R1 = 1.0K,			400	nS
		Cload=10pF				
Output Fall Time	Tf	$V_{DD}=12V R1 = 1.0K,$			400	nS
		Cload=10pF				14
Bandwidth	BW	Operating			15	KHz
Thermal Resistance	RTH	Operating			200	℃/Watt

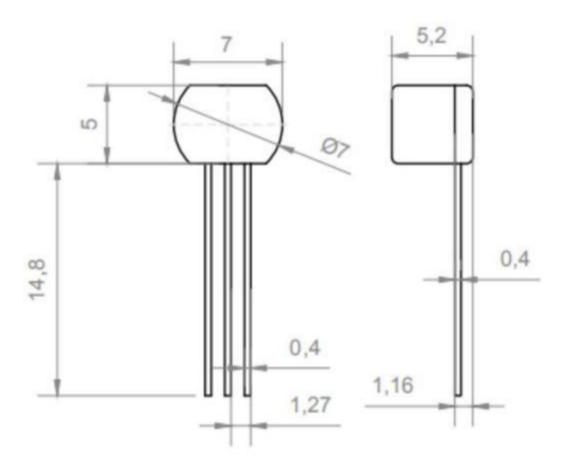

Magnetic Specifications


DC Operating Parameters TA = -40 °C to 150 °C, VDD = 4.0V to 30V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Back Bias Range	Выаѕ	Operating	-30		4000	Gs
Linear Region		V _{DD} = 12V	500		5000	Gs
Hysteresis	Bhys		10		80	Gs

10Gs=1mT

Gear Tooth Sensing


In the case of Ferromagnetic toothed wheel application the IC has to be biased by the south pole of a permanent magnet (Maximum $4000\,\text{Gs}$). When assemble the sensor system, suggest choose a magnet as back bias flux from $1000\,\text{Gs}$ to $4000\,\text{Gs}$. Normally the South pole of magnet faces the unbranded side of the IC and be glued to the back surface (non branded side) of the IC using a adhesive or suitable epoxy. Duo to the HL900G is "Self adjusting" over a wide range of back bias flux eliminating the need for any trimming in the application.

At the chip power on state, the output is reset to the high state whatever the field is . The output only changes after the first min is detected . The reset state holds no information about the field . If the supply of the chip is raised slowly, the reset state is not stable; the output maybe can't set to the high state . The maximum air gap depends on

- the magnetic field strength (magnet used; pre-induction) and
- the toothed wheel that is used (dimensions, material, ect.) It is strongly recommended that an external ceramic bypass capacitor in the range 10 nF to 1 uF be connected between the supply and ground of the device to reduce external noise. The series resistor in combination with the bypass capacitor creates a filter for EMC pulse. The pull- up resistor should be chosen to limit the current though the output transistor; do not exceed the maximum continuous output current of the device.

Package

Notes:

- 1 . Exact body and lead configuration at vendor's option within limits shown .
- 2 . Height does not include mold gate flash .
- 3 .Where no tolerance is specified, dimension is nominal .