

Description

The SX5G10S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

Vps =100V lp =8.8A

 $R_{DS(ON)}$ < 120m Ω @ Vgs=10V

V_{DS} = -100V I_D =-4.8A

 $R_{DS(ON)} < 290 m\Omega$ @ V_{GS} =-10V

Application

BLDC

Absolute Maximum Ratings (T_c=25[°]C unless otherwise noted)

Symbol	Parameter	N-Ch	P-Ch	Units
Vos	Drain-Source Voltage	100	-100	V
Vgs	Gate-Source Voltage	±20	±20	V
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	8.8	4.8	Α
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	5.9	-3.5	А
Ірм	Pulsed Drain Current ²	28	-14.8	Α
EAS	Single Pulse Avalanche Energy ³	28	18	mJ
P □@Tc=25 °C	Total Power Dissipation ⁴	23	21.3	W
Тѕтс	Storage Temperature Range	-55 to 150		$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150		$^{\circ}$
Reja	Thermal Resistance Junction-Ambient ¹	62.5		°C/W
Reuc	Thermal Resistance Junction-Case ¹	5.4		°C/W

N-Electrical Characteristics (T_J=25 ^oC, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	VGS=0V, ID=250µA	100	113	-	V
IDSS	Zero Gate Voltage Drain Current	VDS=100V, VGS=0V,	-	-	1.0	μA
IGSS	Gate to Body Leakage Current	VDS=0V, VGS=±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250μA	1.2	2.0	2.5	٧
DDC(an)		VGS=10V, ID=5A		85	120	mΩ
RDS(on)	Static Drain-Source on-Resistance note3	VGS=4.5V, ID=3A	-	95	150	mΩ
g fs	Forward Transconductance	V DS =5V , I D =5A		14		S
RG	Gate Resistance	VDS = 0V, VGS =0V,f=1MHz		3		Ω
Ciss	Input Capacitance		-	1100	-	pF
Coss	Output Capacitance	VDS=15V, VGS=0V, f=1.0MHz	-	55	-	pF
Crss	Reverse Transfer Capacitance	VDS=15V, VGS=0V, T=1.0MHZ		40	ı	pF
Qg	Total Gate Charge	VDS=50V,	-	11.9	-	nC
Qgs	Gate-Source Charge	VGS=4.5V, ID=3A V DS =5V , I D =5A VDS = 0V, VGS =0V,f =1MHz VDS=15V, VGS=0V, f=1.0MH	-	2.8	-	nC
Qgd	Gate-Drain("Miller") Charge	ID=5A,		1.7	-	nC
td(on)	Turn-on Delay Time		-	3.8	•	ns
tr	Turn-on Rise Time	VDS=30V, ID=5A,	-	25.8	-	ns
td(off)	Turn-off Delay Time		-	16	-	ns
tf	Turn-off Fall Time		-	8.8	-	ns
IS	Continuous Source Current1,5	VG=VD=0V , Force Current	-	_	14.6	Α
ISM	Pulsed Source Current2,5	VG-VD-UV , FOICE CUITEIN	-	-	25	Α
VSD	Diode Forward Voltage2	VGS=0V, IS=10A	-	-	1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The power dissipation is limited by $150\,^\circ\!\mathrm{C}$ junction temperature
- 4 . The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation.

2

P-Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	V _G S = 0V, I _D = -250μA	-100	117	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -100V, V _{GS} = 0V	-	-	1	μA
IGSS	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250µA	-1.2	-1.85	-2.5	V
DDC(an)	Static Drain-Source On-Resistance note1	Vgs = -10V, ID = -5A	-	250	300	mΩ
RDS(on)	Static Drain-Source On-Resistance	V _G S = -4.5V, I _D = -3A	-	260	340	
Ciss	Input Capacitance		-	760	-	pF
Coss	Output Capacitance	$V_{DS} = -50V, V_{GS} = 0V,$ f = 1.0MHz	-	25	-	pF
Crss	Reverse Transfer Capacitance	1 - 1.01/11/12	-	12	-	pF
Qg	Total Gate Charge		-	11.5	-	nC
Qgs	Gate-Source Charge	$V_{DD} = -50V, I_{D} = -5A, V_{GS} = -10V$	-	1.3	-	nC
Qgd	Gate-Drain("Miller") Charge	V00 10V	-	2.9	-	nC
td(on)	Turn-On Delay Time		_	12	-	ns
tr	Turn-On Rise Time	V_{DS} = -50V, I_{D} = -5A R_{G} =4.5Ω, R_{L} =25Ω	-	5	-	ns
td(off)	Turn-Off Delay Time	V _{GEN} = - 10 V	-	35	-	ns
tf	Turn-Off Fall Time		-	20	-	ns
IS	Maximum Continuous Drain to Source	num Continuous Drain to Source Diode Forward Current		-	-12.8	Α
VSD	Drain to Source Diode Forward Voltage	V _G S = 0V, I _S =-1A	-	-	-1.3	V
trr	Reverse Recovery Time	V _{GS} = 0V, I _{sd} = -3A, di/dt	-	25	-	nS
Qrr	Reverse Recovery Charge	=100A/µs	_	20	_	nC

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
 2. The data tested by pulsed, pulse width .The EAS data shows Max. rating.

- 3. The power dissipation is limited by 175° C junction temperature 4. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

3

N-Typical Characteristics

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 4. Gate Charge Characteristics

Figure 5. RDS(on) vs. V GS

Figure 6. R DS(on) vs. ID

N-Typical Characteristics

Figure 7. Capacitance Characteristics

Figure 8. Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance

5

Figure 10. Switching Time Waveform

Figure 11. Unclamped Inductive Switching Waveform

P-Typical Characteristics

6

P-Typical Characteristics

Square Wave Pulse Duration (s)
Figure 10.Normalized Transient Impedance

7

Figure 10. Switching Time Waveform

Figure 11. Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

Cb - 1	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3.800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050	(BSC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

8