
# JLHF40W120R34E6DN

### L34 module with GEN6 IGBT and emitter controlled diode

#### **Features**

- Electrical features
  - V<sub>CES</sub> = 1200 V
  - IC  $_{nom}$  = 40 A /  $I_{CRM}$  = 80 A
  - V<sub>CEsat</sub> with positive temperature coefficient
- Mechanical features
  - Standard housing
  - 2.5 kV AC 1 min insulation
  - High creepage and clearance distances
  - Isolated base plate



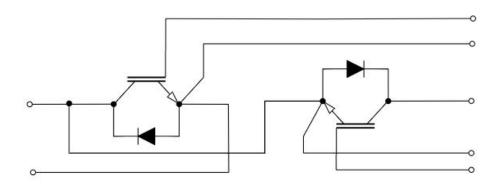
#### **Typical Applications**

- Inverters
- Servo
- UPS (Uninterruptible Power Supplies)
- Welding

JINLAN = Company Name

JLHF40W120R34E6DN

34PACK


JLHF40W120R34E6DN = Specific Device Code

YYWW = Year and Work Week Code

XXXXX = Serial Number

QR code = Custom Assembly Information

#### Description





### Package Insulation coordination

| Symbol             | Parameter Note or test condition       |                      | Values | Unit |
|--------------------|----------------------------------------|----------------------|--------|------|
| Visol              | Isolation test voltage                 | RMS,f=50Hz,t=60s     | 2.5    | kV   |
| d <sub>creep</sub> | Creepage distance terminal to heatsink |                      | 17.0   | mm   |
| d <sub>creep</sub> | Creepage distance terminal to terminal |                      | 20.0   | mm   |
| d <sub>clear</sub> | Clearance                              | terminal to heatsink | 17.0   | mm   |
| d <sub>clear</sub> | Clearance                              | terminal to terminal | 9.5    | mm   |
|                    | Comparative tracking index             |                      |        |      |
| CTI                | (electrical)                           |                      | ≥175   |      |

## **Package Characteristic values**

| Symbol               |                                          |                                                          | Values    |      |      |      |      |
|----------------------|------------------------------------------|----------------------------------------------------------|-----------|------|------|------|------|
| Symbol               | Description                              | Note or test condition                                   |           | Min. | Тур. | Max. | Unit |
| L <sub>sCE</sub>     | Stray Inductance                         |                                                          |           |      | 30   |      | nH   |
| R <sub>CC'+EE'</sub> | Module Lead Resistance, Terminal to Chip | T <sub>C</sub> =25°C, per switch                         |           |      | 0.75 |      | mΩ   |
| T <sub>stg</sub>     | Storage temperature                      |                                                          |           | -40  |      | 125  | °C   |
| M                    | Mounting torque for module mounting      | -Mounting according to valid application note            | M5, Screw | 2.5  | -    | 5.0  | Nm   |
| M                    | Terminal connection torque               | -Mounting according to valid  M6, Screw application note |           | 3.0  |      | 5.0  | Nm   |
| G                    | Weight                                   |                                                          |           |      | 150  |      | g    |



# **IGBT**

#### Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

| Symbol           | Description                                                                      | Note or test condition                                 | Value | Unit |
|------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|-------|------|
| $V_{\text{CES}}$ | Collector-Emitter Voltage                                                        | T <sub>vj</sub> = 25 °C                                | 1200  | V    |
| I <sub>CDC</sub> | Continuous Collector Current @ T <sub>C</sub> = 80°C (T <sub>JMAX</sub> = 175°C) |                                                        | 40    | А    |
| I <sub>CRM</sub> | Repetitive peak collector current                                                | Peak Collector Current@ tp=1ms                         | 80    | A    |
| P <sub>tot</sub> | Total power dissipation                                                          | $T_C = 25^{\circ}C, T_{vj \text{ max}} = 150^{\circ}C$ | 189   | w    |
| $V_{GES}$        | Gate-emitter peak voltage                                                        |                                                        | ±30   | V    |

#### Characteristics (Tc = 25°C unless otherwise noted)

| O                   | Parameter Test Condition             |                                                                                            | Dozomotov                            | Tost Condition | Rating |     |       | Unit |
|---------------------|--------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|----------------|--------|-----|-------|------|
| Symbol              | Parameter                            | rest Condition                                                                             |                                      | Min            | Тур    | Max | Oilit |      |
|                     | Collector-Emitter Saturation Voltage | I <sub>C</sub> =40A                                                                        | Tj=25°C                              |                | 2.0    | 2.8 | V     |      |
| $V_{CE(sat)}$       | Collector-Emitter Saturation Voltage | V <sub>GE</sub> =15V                                                                       | Tj=150°C                             |                | 2.4    |     | V     |      |
| $V_{\text{GE(TH)}}$ | Gate-Emitter Threshold Voltage       | $I_C=1mA, V_{CE}=V_{GI}$                                                                   | <sub>E,</sub> T <sub>vj</sub> = 25°C | 4.5            | 1      | 6.5 | V     |      |
| Ices                | Collector-Emitter Cutoff Current     | V <sub>GE</sub> =0V,V <sub>CE</sub> =120                                                   | 0V,T <sub>vj</sub> = 25°C            |                |        | 500 | uA    |      |
| I <sub>GES</sub>    | Gate-Emitter Leakage Current         | $V_{GE} = \pm 20V$ , $V_{CE} = 0$                                                          | O V, T <sub>vj</sub> = 25°C          |                |        | 100 | nA    |      |
| R <sub>Gint</sub>   | Internal Gate Resistance             | T <sub>vj</sub> = 25 °C                                                                    |                                      |                | 0.8    |     | Ω     |      |
| Cies                | Input Capacitance                    | V <sub>CE</sub> =30V,V <sub>GE</sub> =0V, f=1MHz,T <sub>vj</sub> = 25°C                    |                                      |                | 6190   |     |       |      |
| Coes                | Output Capacitance                   |                                                                                            |                                      |                | 185    |     | pF    |      |
| C <sub>res</sub>    | Reverse Transfer Capacitance         |                                                                                            |                                      |                | 133    |     |       |      |
| Qg                  | Total Gate Charge                    |                                                                                            |                                      |                | 242    |     |       |      |
| Q <sub>ge</sub>     | Gate to Emitter Charge               | V <sub>CC</sub> =960V, I <sub>C</sub> =40A,<br>V <sub>GE</sub> =15V,T <sub>VI</sub> = 25°C |                                      |                | 51     |     | nC    |      |
| $Q_{gc}$            | Gate to Collector Charge             | . 32                                                                                       |                                      |                | 115    | ŀ   |       |      |
| $t_{d(ON)}$         | Turn-on Delay Time                   |                                                                                            |                                      |                | 40     |     |       |      |
| t <sub>r</sub>      | Rise Time                            |                                                                                            |                                      |                | 28     |     |       |      |
| $t_{\text{d(OFF)}}$ | Turn-Off Delay Time                  | V <sub>CE</sub> =600V,I <sub>C</sub> =40A,                                                 |                                      |                | 144    |     | ns    |      |
| t <sub>f</sub>      | Fall Time                            | $V_{GE}$ =15/-5V, $R_{g}$ =7.8 $\Omega$                                                    |                                      |                | 62     |     |       |      |
| Eon                 | Turn-On Switching Loss               | Inductive Load                                                                             |                                      |                | 2.1    |     |       |      |
| E <sub>off</sub>    | Turn-Off Switching Loss              |                                                                                            |                                      |                | 1.2    |     | mJ    |      |
| Ets                 | Total Switching Loss                 |                                                                                            |                                      |                | 3.3    |     | 1     |      |
| R <sub>thJC</sub>   | Thermal resistance,junction to case  | per IGBT                                                                                   |                                      |                | 0.32   |     | K/W   |      |



| _       | Temperature under switching |     |           | 0.0 |
|---------|-----------------------------|-----|-----------|-----|
| I vj op | conditions                  | -40 | <br>1501) | ٠   |

 $<sup>^{1)}</sup>T_{vj op} > 150^{\circ}C$  is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

### Diode

#### Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

| Symbol           | Description                     | Note or test condition  | Value | Unit |
|------------------|---------------------------------|-------------------------|-------|------|
| $V_{RRM}$        | Repetitive peak reverse voltage | T <sub>vj</sub> = 25 °C | 1200  | V    |
| I <sub>F</sub>   | Continuous DC forward current   |                         | 40    | А    |
| I <sub>FRM</sub> | Repetitive peak forward current | t <sub>P</sub> = 1 ms   | 80    | А    |

#### Characteristics (Tc = 25°C unless otherwise noted)

| Symbol             | Parameter                              | T4 0                                                                 | Rating |       |                   | Units  |
|--------------------|----------------------------------------|----------------------------------------------------------------------|--------|-------|-------------------|--------|
|                    |                                        | Test Conditions                                                      | Min.   | Тур.  | Max.              | Ullits |
| $V_{F}$            | Diode Forward Voltage                  | I <sub>F</sub> =40A                                                  |        | 3.3   | 4.2               | V      |
| Trr                | Reverse Recovery Time                  |                                                                      |        | 115   |                   | ns     |
| I <sub>RRM</sub>   | Diode Peak Reverse Recovery Current    | V <sub>CE</sub> =600V,I <sub>F</sub> =40A,<br>V <sub>GE</sub> =15/0V |        | 14    |                   | А      |
| Qrr                | Reverse Recovery Charge                | $R_g=7.8\Omega$                                                      |        | 1.05  |                   | uC     |
| E <sub>rec</sub>   | Reverse Recovery Energy                |                                                                      |        | 0.5   |                   | mJ     |
| R <sub>thJC</sub>  | Thermal resistance, junction to case   | Per Diode                                                            |        | 0.924 |                   | K/W    |
| T <sub>vj op</sub> | Temperature under switching conditions |                                                                      | -40    |       | 150 <sup>2)</sup> | °C     |

 $<sup>^{2)}</sup>T_{vj op} > 150^{\circ}C$  is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.



### **Typical Electrical and Thermal Characteristics**

**Figure 1 Output Characteristics** 

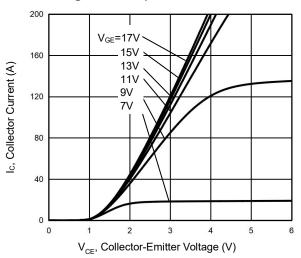
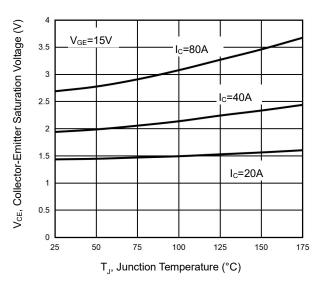
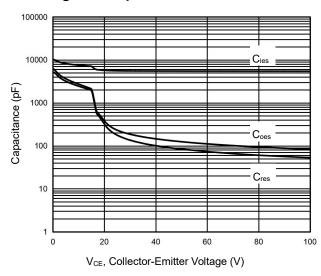
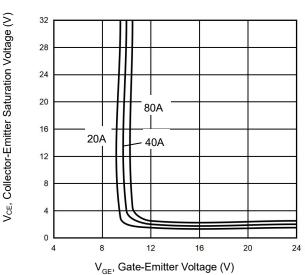





Figure 3  $V_{\text{CE(sat)}}$  vs. Case Temperature




**Figure 5 Capacitance Characteristics** 



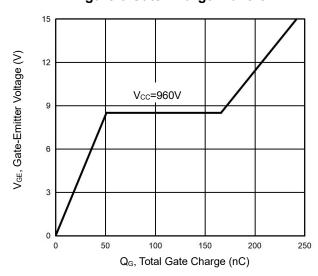

**Figure 2 Transfer Characteristics** 



Figure 4 Saturation Voltage vs. V<sub>GE</sub>



**Figure 6 Gate Charge Waveform** 



I<sub>F</sub>=80A

40A

20A

150

175



### **Typical Electrical and Thermal Characteristics**

**Figure 7 Forward Characteristics** 140 120 100 I<sub>F</sub>, Forward Current (A) 80 60 150°C 40 25°C 20 0 V<sub>F</sub>, Forward Voltage (V)

4.5 V<sub>F</sub>, Forward Voltage (V) 3.5 2.5 2 25 T<sub>J</sub>, Junction Temperature (°C)

Figure 9 Gate-emitter Threshold Voltage as a Function of Junction Temperature

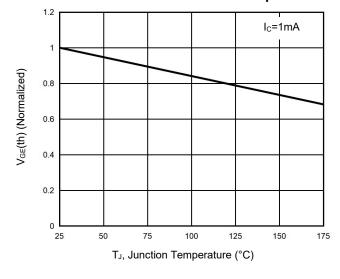
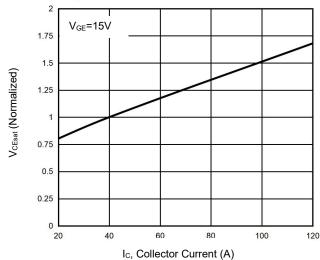




Figure 10 Typical Collector-emitter Saturation Voltage as a function of Collector Current

100

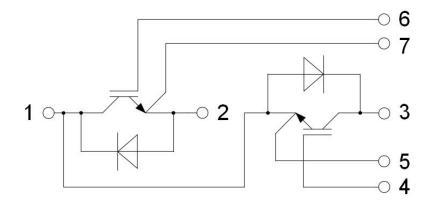
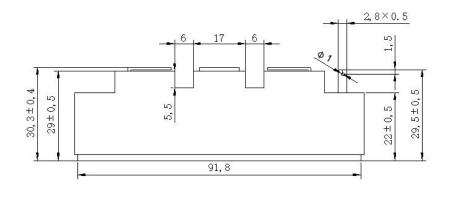
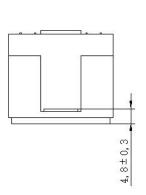
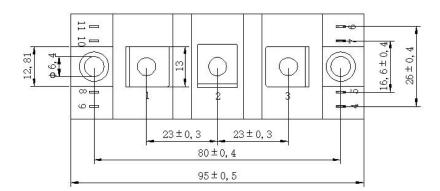

125

Figure 8 V<sub>F</sub> vs. Temperature







### **Circuit Diagram**




# **Package Dimensions**

#### **Dimensions in Millimeters**









#### **REVISION HISTORY**

| Document version | Date of release | Description of changes |
|------------------|-----------------|------------------------|
| Rev.00           | 2024-08-06      | Preview                |
|                  |                 |                        |



#### Attention:

- Any and all Jinlan power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Jinlan Power Semiconductor representative nearest you before using any Jinlan power products described or contained herein in such applications.
- Jinlan Power Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Jinlan power modules described or contained herein.
- Specifications of any and all Jinlan power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Jinlan Power Semiconductor (Wuxi).co.,LTD. strives to supply high-quality high-reliability products. However,any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Jinlan power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Jinlan Power Semiconductor (Wuxi).co.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Jinlan Power Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Jinlan power product that you intend to use.
- This catalog provides information as of August.2024. specifications and information herein are subject to change without notice.