

HACD1216QN型

低抖动LVDS时钟缓冲器 产品说明书

成都华奥创芯科技有限公司

1 产品概述

HACD1216QN 是一款 2.0GHz, 16 路输出差分高性能时钟扇出缓冲器,它将两个可选输入时钟之一分配给十六对差分 LVDS 时钟输出,输入信号可以是 LVDS、LVPECL 或 LVCMOS,最高时钟频率可达 2.0GHz。该器件专为高频、低相位噪声时钟和数据信号的信号扇出而设计。

2 产品特性

- a) 2: 16 差分时钟缓冲器;
- b) 通用输入接受 LVPECL、LVDS、HCSL 和 LVCMOS;
- c) 十六路 LVDS 输出;
- d) 最大输出频率 (LVDS): 2.0GHz;
- e) 最大传播延迟: 545ps (典型值);
- f) 输出偏斜: 55ps (最大值);
- g) 低附加抖动@156.25MHz: 51.8 fs RMS (10kHz~20MHz);
- h) 电源电压: 3.3V 或 2.5V;
- i) 与 TI 公司的 CDCLVD1216 引脚兼容;
- j) 封装形式为 QFN48, 塑封。

3 功能描述

表1输入选择真值表

IN_SEL	时钟输入
0	INPO, INNO
1	INP1, INN1

4 原理框图

产品的功能原理框图如图 1 所示。

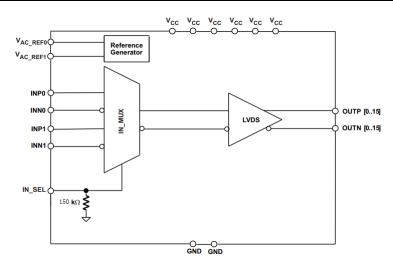
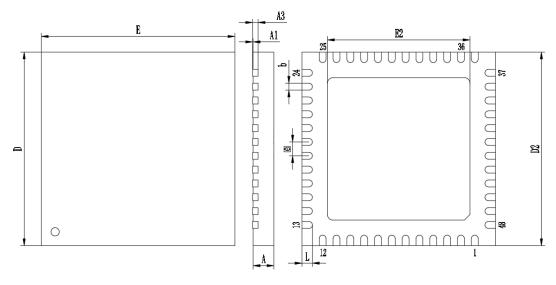



图1 功能框图

5 封装形式及尺寸

HACD1216QN 采用 QFN48 封装,具体封装尺寸如图 2 所示。

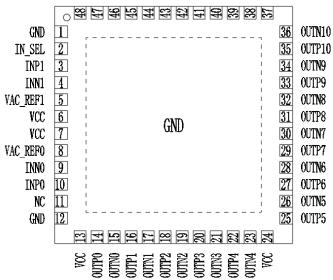

尺寸符号		数值(单位: mm)	
人力和克	最小	公称	最大
A	0.70	0.75	0.80
A1	0	0.02	0.05
A3		0.20	1
b	0.19	0.24	0.29
D	6.80	7.00	7.20
Е	6.80	7.00	7.20
e		0.50BSC	1
D2	5.00	5.15	5.25
E2	5.00	5.15	5.25
L	0.30	0.40	0.50

图2 HACD1216QN 封装尺寸图

6 引出端排列图

00TP15 00TP15 00TP14 00TP14 00TP13 00TP13 00TP12 00TP12 00TP12

注: 底部焊盘 PAD (即 GND) 必须连接至 VEE。

图3 HACD1216QN 引出端排列图(顶视图)

表2 HACD1216QN 引出端功能表

引出端 序号	符号	I/O	功能	
1	GND		接地	
2	IN_SEL	I	输入选择端,内部 150k Ω 下拉电阻。	
3	INP1	I	差分或单端输入,未使用可悬空。	
4	INN1	I	差分输入对	
5	V _{AC_REF1}	О	基准输出电压。如果使用,建议在此引脚上使用 0.1 μ F 至 GND。	
6	VCC	I	电源	
7	VCC	I	电源	
8	V _{AC_REF0}	О	基准输出电压。如果使用,建议在此引脚上使用 0.1 μ F 至 GND。	
9	INP0	I	差分或单端输入,未使用可悬空。	
10	INN0	I	差分输入对	
11	NC		悬空	

12	GND		接地
13	VCC	I	电源
14	OUTP0	О	差分 LVDS 时钟输出对 0
15	OUTN0	О	差分 LVDS 时钟输出对 0
16	OUTP1	О	差分 LVDS 时钟输出对 1
17	OUTN1	О	差分 LVDS 时钟输出对 1
18	OUTP2	О	差分 LVDS 时钟输出对 2
19	OUTN2	О	差分 LVDS 时钟输出对 2
20	OUTP3	О	差分 LVDS 时钟输出对 3
21	OUTN3	О	差分 LVDS 时钟输出对 3
22	OUTP4	О	差分 LVDS 时钟输出对 4
23	OUTN4	О	差分 LVDS 时钟输出对 4
24	VCC	I	电源
25	OUTP5	О	差分 LVDS 时钟输出对 5
26	OUTN5	О	差分 LVDS 时钟输出对 5
27	OUTP6	О	差分 LVDS 时钟输出对 6
28	OUTN6	О	差分 LVDS 时钟输出对 6
29	OUTP7	О	差分 LVDS 时钟输出对 7
30	OUTN7	О	差分 LVDS 时钟输出对 7
31	OUTP8	О	差分 LVDS 时钟输出对 8
32	OUTN8	О	差分 LVDS 时钟输出对 8
33	OUTP9	О	差分 LVDS 时钟输出对 9
34	OUTN9	О	差分 LVDS 时钟输出对 9
35	OUTP10	О	差分 LVDS 时钟输出对 10
36	OUTN10	О	差分 LVDS 时钟输出对 10
37	VCC	I	电源
38	OUTP11	О	差分 LVDS 时钟输出对 11

39	OUTN11	О	差分 LVDS 时钟输出对 11
40	OUTP12	О	差分 LVDS 时钟输出对 12
41	OUTN12	О	差分 LVDS 时钟输出对 12
42	OUTP13	О	差分 LVDS 时钟输出对 13
43	OUTN13	О	差分 LVDS 时钟输出对 13
44	OUTP14	О	差分 LVDS 时钟输出对 14
45	OUTN14	О	差分 LVDS 时钟输出对 14
46	OUTP15	О	差分 LVDS 时钟输出对 15
47	OUTN15	О	差分 LVDS 时钟输出对 15
48	VCC	I	电源

7 绝对最大额定值

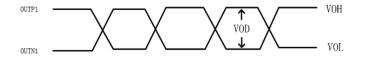
参数	符号	最小值	最大值	单位
电源电压	VCC	0.5	4.6	V
输入电压	VIN	-0.5	VCC+0.5	V
结温范围	T _J		125	$^{\circ}$ C
储藏温度	T_{STG}	-65	150	$^{\circ}$ C

8 推荐工作条件

参数	符号	最小值	最大值	单位
电源电压	3.135 3.465		3.465	V
电你电压	VCC	2.375	2.625	V
工作温度	T_{A}	-40	85	$^{\circ}$

9 电特性

除另有规定外,VCC=3.3V±5%,-40 $\mathbb{C} \leq T_A \leq 85\mathbb{C}$,产品的电特性见表 3 所示。


表3 电特性

参数符号	条件	参数值			单位	
参数	17 5	余 件	最小	典型	最大	平世
т	1 供出出法	VCC=3.3V				mA
I_{CC}	供电电流	VCC=2.5V				mA
下拉电阻	R _{pull}			150		kΩ

	(IN_SEL)					
LVCMOS 输入						
输入频率	F _{IN}	VCC=3.3V	0.1		250	MHz
输入阈值电 压	V_{th}	施加到互补输入端的外部阈值 电压	1.1		1.5	V
输入高电压	V _{IH}		1.2		VCC	V
输入低电压	$V_{\rm IL}$		0		1.4	V
输入高电流	I_{IH}	$VCC = 3.6V, V_{IH} = 3.6V$			40	μΑ
输入低电流	I_{IL}	VCC= 3.6V, V _{IL} =0V			-40	μΑ
输入电容	C _{IN}			2.5		pF
差分输入特性						
输入频率	F_{IN}	VCC=3.3V	0.1		2000	MHz
差分输入电 压(峰峰值)	$V_{\rm IN,DIFF}$	V _{ICM} =1.25V	0.3		1.6	V_{P-P}
输入共模电 压	$V_{\rm ICM}$	$V_{\rm IN,\;DIFF,\;PP}>0.4$	1		VCC-0.3	V
输入高电流	I_{IH}	VCC=3.6V, V _{IH} =3.6V	-		40	μΑ
输入低电流	I_{IL}	VCC=3.6V, V _{IL} =0V			-40	μΑ
输入电容	C_{IN}		-	2.5		pF
LVDS 输出特	性					
差分输出电 压幅值	V_{OD}	$V_{\rm IN,DIFF,PP}$ =0.3V,RL=100 Ω	250		450	mV
差分输出电 压幅值变化	ΔV_{OD}	$V_{IN, DIFF,PP}$ =0.3V,RL=100 Ω	-15		15	mV
稳态模式输 出电压	V _{OC(ss)}	$V_{\rm IN,DIFF,PP}$ =0.3V,RL=100 Ω	1.1		1.375	V
稳态模式输 出电压幅值 变化	$\Delta V_{OC(ss)}$	$V_{IN, DIFF,PP}$ =0.3V,RL=100 Ω	-15		15	V
输出过冲或 下冲	Vring	输出幅度 VoD 的百分比			10%	
传播延迟	t_{PD}	3.3V@100MHz		1.5	2.5	ns
输出偏斜	t _{SK,O}				55	ps
脉冲偏斜	$t_{SK,P}$	50%占空比输入,交叉点间失真	-50		50	ps
随机附加抖 动	t_{RJIT}	50% 占空比输入,10KHz 到 20MHz ,VCC=3.3V。			300	fs
输出上升时 间		20%到 80%		450	600	ps
输出下降时 间	$t_{ m R}/t_{ m F}$	20%到 80%		450	600	ps
V _{AC_REF} 特性		1	<u> </u>	1		
参考输出电压	V_{AC_REF}	VCC=2.5V, I _{load} =100 μ A	1.1	1.25	1.35	V

10 典型性能特征

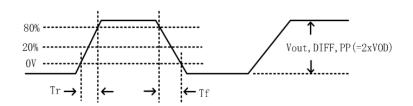


图4输出电压和上升/下降时间

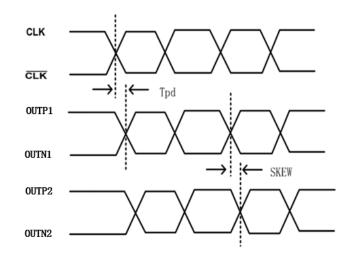


图5输出和偏斜

注:输出偏斜按以下两者中的较大值计算:作为最快和最慢 tPLHn 之间的差值($n=0,1,2\cdots.7$),或作为最快与最慢 tPHLn 之间的差($n=0,1,2\cdots.7$)。

11 典型应用及注意事项

a) 差分信号输入以接受单端电平电路

对于单端输入的 LVCMOS 信号,驱动器中的 Rs 和 R0 形成 50 Ω 阻抗匹配,定向隔离电容器 C3 避免了输入和输出之间共模电平的影响,然后通过分压器和共模电平将接收器驱动到 VCC/2。

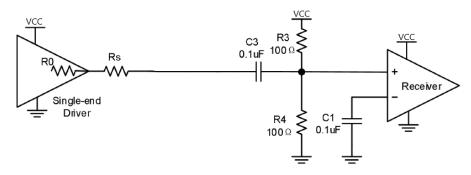


图6差分输入的单端接方法

b) 输入连接电路

CLK/CLK接受 LVDS、LVPECL、HCSL 和其他差分信号。两个差分信号都必须满足 VPP 和 VCMR 输入要求。图 7 至图 11 显示了由最常见的驱动器类型驱动的 CLK/CLK输入的接口示例。

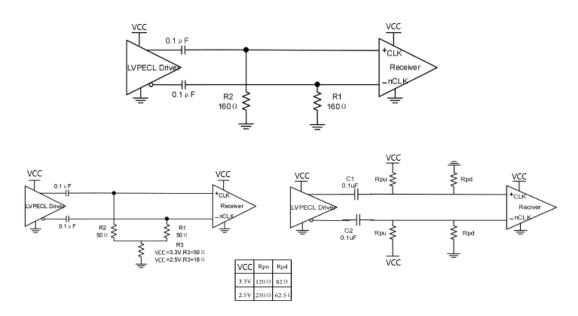


图7 LVPECL 驱动器 (AC)

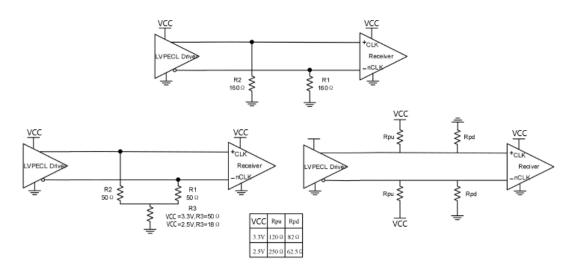


图8 LVPECL 驱动器(DC)

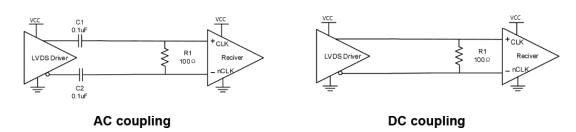


图9 LVDS 驱动器

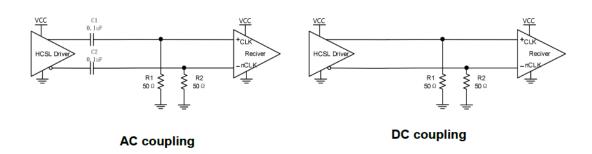


图10 HCSL 驱动器

c) 输出连接电路

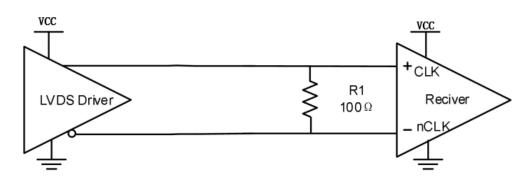


图11 LVDS 驱动器

12 订货信息

<u>HA</u> <u>CD</u> <u>1216</u> <u>QN</u>

1 2 3 4

- ① 单位简称
- ② 产品分类标识
- ③ 产品代号
- ④ 封装形式标识

13 版本修订

表4版本修订汇总表

版本	时间	描述	更改页
V1.0	2023.10.20	新建	