

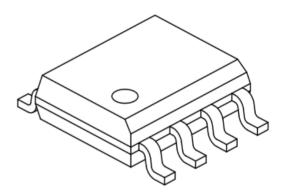
Product Specification

TUDI-TC4426

1.5A Dual High-Speed Power MOSFET Drivers

网址 www.sztdbdt.com Q

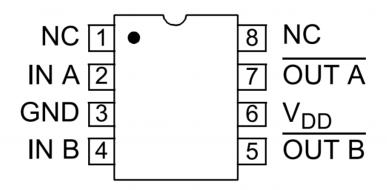
用芯智造・卓越品质


semiconductor device manufacturer

- Design
- research and development
- production
- and sales

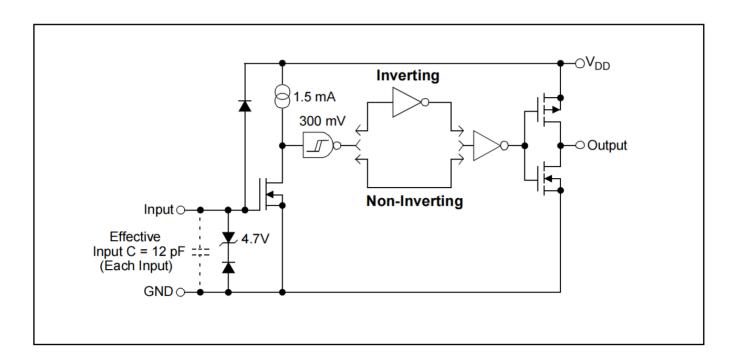
Features

- High Peak Output Current: 1.5A
- Wide Supply Voltage Operating Range: 4.5V to 25V
- High Capacitive Load Drive Capability 1000pF in 11ns (typical)
- Short Delay Times: 35ns (typical)
- Matched Rise/Fall Times
- Low Output Impedance
- Low Supply Current
- Over-temperature Protection
- Under-voltage Lockout
- Non-overlapped Drive Tech
- ESD Protected: 2.0kV
- Input withstands negative inputs up to 5V
- Available in Green SOP8, DIP8 Packages


General Description

The TC4426 is matched dual power MOSFET drivers. Unique circuit design enables high speed operation capable of delivering peak currents of 1.5A into 1000pF capacitive loads. Improved speed and drive capability are enhanced by matched rise and fall delay times. These matched delays maintain the integrity of input-to-output pulse-widths to reduce timing errors and clock skew problems. Dynamic switching losses are minimized with non-overlapped drive techni- ques. These devices are highly latch-up resistant within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the ground pin. All terminals are fully protected against Electrostatic Discharge (ESD) up to 2.0 kV.

Applications


- Wireless Power Transmitter
- Pulse Transformer Drivers
- CCD Driver
- Class D Switching Amplifiers
- Switch Mode Power Supplies
- Line Drivers
- Power MOSFET Drivers

TC4426:Outputs out of phase with in puts

Functional Block Diagram

Function Table

		4426		
INA	INB	OUTA	OUT B	
L	L	Н	Н	
L	Н	Н	L	
Н	L	L	Н	
Н	Н	L	L	

Pin Descriptio

Pin	Name	Description
1	NC	No connection
2	IN A	Input A
3	GND	Ground
4	In B	Input B
5	OUT B	Output of Channel B
6	VDD	Power Supply
7	OUTA	Output of Channel A
8	NC	No connection
-	PAD	Exposed Metal Pad

1.1 Inputs A and B

MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

1.2 Ground (GND)

Ground is the device return pin. The Ground pin(s) should have a low-impedance connection to the bias supply source return. High peak current flows out the Ground pin(s) when the capacitive load is being discharged.

1.3 Output A and B

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent.

1.4 Supply Input (VDD)

The VDD input is the bias supply for the MOSFET driver and is rated for 4.5V to 25V with respect to the Ground pin. The VDD input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven. A value of 1.0 μ F is suggested.

1.5 Exposed Metal Pad

The exposed metal pad of the DFN-8 package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a Printed Circuit Board (PCB), to aid in heat removal from the package.

2. Product Specification

2.1 Absolute Maximum Ratings (1)

Parameter	Min	Max	Unit
DC supply voltage Vs		26	V
Operating junction temperature	-40	125	°C
Storage temperature	-55	150	°C
Maximum input voltage	GND-5	V _{DD} +0.3	V
Combined peak output current		4	Α

(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

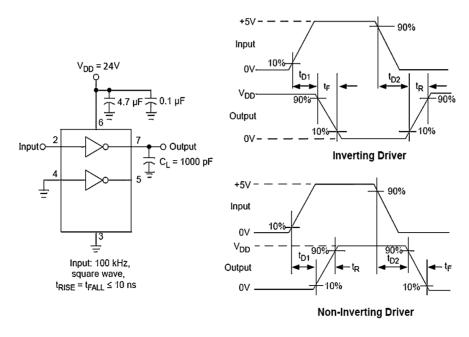
2.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	155 (SOP8) 90 (DIP8) 57 (FDN8,3x3)	°C/W

2.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	4.5V ~ 25V	V
Operating ambient temperature	-40 to +85	°C

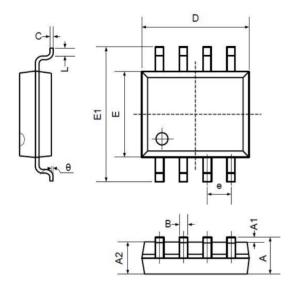
2.4 Electrical Characteristics


(Typical values are tested at T_A=25 °C, V_{DD}=18V)

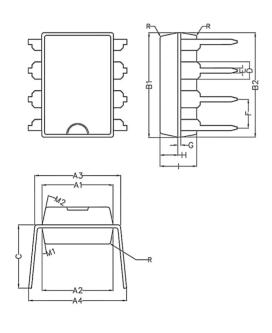
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
INPUT						
Input Signal High Threshold	V _{IH}		1.8			V
Input Signal Low Threshold	V _{IL}				0.7	V
Input Signal Hysteresis	V _{HYS}			0.3		V
Input Current	I _{IN}	$0V \leq V_{IN} \leq V_{DD}$			±1	μA
ОИТРИТ						
Pull-Up Resistance	RoH	Source Current = 10mA		2.0		Ω
Pull-Down Resistance	RoL	Sink Current = -10mA		2.0		Ω
Dook Output Current	L	Source Current, f=1kHz, C _L =1000pF		1.5		
Peak Output Current	I _{PK}	Sink Current, f=1kHz, C _L =1000pF		-1.5		A
Continuous Output Current	I _{DC}	Source / Sink Current		±200		mA

loo	V _{INA} =V _{INB} =3V		0.9		mA
ICC	V _{INA} =V _{INB} =0V		0.5		mA
V _{DD}		4.5		25	V
			3.6	4	V
			0.5		V
Hysteresis SWITCHING CHARACTERISTICS					
t R	C _L =1000pF, See Figure 3.1		11		ns
t _F	CL =1000pF, See Figure 3.1		11		ns
t _{D1}	Non-inverting Input		34		ns
	Inverting Input		44		ns
	Non-inverting Input		34		ns
LD2	Inverting Input		44		ns
OVER-TEMPERATURE PROTECTION					
			150		°C
			25		°C
	t _P	Vocasia Voca	Vod	Icc	CC

3.0 Application Information



Switching Time Test Circuit


4.0 Package Information

4.1 SOP8 (Package Outline Dimensions)

Symbol		nsions meters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270TYP		0.050	TYP	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

4.2 DIP8 (Package Outline Dimensions)

Symbol	Min	Non	Max
A1	6. 28	6. 33	6.38
A2	6. 33	6.38	6. 43
A3	7. 52	7.62	7.72
A4	7.80	8.40	9.00
B1	9. 15	9. 20	9. 25
B2	9. 20	9. 25	9.30
С		5. 57	
D		1. 52	
Е	0. 43	0.45	0.47
F		2.54	
G		0. 25	
Н	1. 54	1. 59	1.64
I	3. 22	3. 27	3. 32
R		0. 20	
M1	9°	10°	11°
M2	11°	12°	13°

5.Ordering Informatio

Order Number	Package	Package Quantity	Marking On The park
TC4426AVOA-TUDI	SOP8	Tape,Reel,2500	TC4426AVOA

Important statement:

- ●TUDI Semiconductor reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using TUDI Semiconductor products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- ●TUDI Semiconductor products have not been licensed for life support, military, and aerospace applications, and therefore TUDI Semiconductor is not responsible for any consequences arising from the use of this product in these areas.
- ●If any or all TUDI Semiconductor products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- ●The specifications of any and all TUDI Semiconductor products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- ●TUDI Semiconductor documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. TUDI Semiconductor assumes no responsibility or liability for altered documents.
- ●TUDI Semiconductor is committed to becoming the preferred semiconductor brand for customers, and TUDI Semiconductor will strive to provide customers with better performance and better quallity products.