

-30V P-Channel Enhancement Mode MOSFET

Description

The SX20P03S uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = -30V I_D =-20A

 $R_{DS(ON)}$ <7.5m Ω @ Vgs=-10V

Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

Absolute Maximum Ratings (TC=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	-30	V
VGS	Gate-Source Voltage	±20	V
ID@TC=25℃	Continuous Drain Current, VGS @ -10V1	-20	А
ID@TC=100°C	Continuous Drain Current, VGS @ -10V1	-16.8	A
IDM	Pulsed Drain Current2	-120	A
EAS	Single Pulse Avalanche Energy3	125	mJ
PD@TC=25℃	Total Power Dissipation4	69	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
RθJA	Thermal Resistance Junction-Ambient 1	85	°C/W
R0JC	Thermal Resistance Junction-Case1	1.6	°C/W

Electrical Characteristics (T_J=25 ^oC, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-30	-34		V	
△BVbss/△T	BVDSS Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.0232		V/°C	
RDS(ON)	Static Drain-Source On-Resistance	Vgs=-10V , Ip=-20A		5.2	7.5	mΩ	
		Vgs=-4.5V , Ip=-15A		8.0	11		
V _G S(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.2	-1.4	-2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	- V65-V55 ; ID - 2000/ (4.6		mV/℃	
	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1	uA	
loss		V _{DS} =-24V , V _{GS} =0V , T _J =55℃			-5		
lgss	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=-5V , ID=-30A		30		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		9.8		Ω	
Qg	Total Gate Charge (-4.5V)			35		nC	
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V b=-20A		9.9			
Qgd	Gate-Drain Charge	D20A		10.5			
Td(on)	Turn-On Delay Time	V 45V V 40V		10.8		ns	
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V , R _G =3.0Ω		13.2			
Td(off)	Turn-Off Delay Time			73			
Tf	Fall Time	b=-20A		35			
Ciss	Input Capacitance			3520			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		465		pF	
Crss	Reverse Transfer Capacitance			370			
ls	Continuous Source Current	V _G =V _D =0V , Force Current			-70	Α	
Іѕм	Pulsed Source Current	VG-VD-0V , Force Current			-130	Α	
VsD	Diode Forward Voltage	Vgs=0V , Is=-1A , Tյ=25℃			-1.3	V	
trr	Reverse Recovery Time	I _F =-20A , dI/dt=100A/μs ,		25		nS	
Qrr	Reverse Recovery Charge	TJ=25℃		10		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- $3 {\ \ }^{\scriptscriptstyle \sim}$ The power dissipation is limited by $175 {\ \ \ }^{\scriptscriptstyle \sim}$ junction temperature
- 4、EAS condition: TJ=25°C , VDD= -24V, VG= -10V, RG=7 Ω , L=0.1mH, IAS= -40A
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

www.sxsemi.com

Typical Characteristics

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. R_{DS(ON)} vs. I_D

Figure 2. Transfer Characteristics

Figure 4. R_{DS(ON)} vs. V_{GS}

Figure 6. Normalized $R_{DS(\alpha n)}$ vs. Temperature

Typical Characteristics

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Power Dissipation

Figure 10. Safe Operating Area

1000

Figure 11. Normalized Maximum Transient Thermal Impedance

Package Mechanical Data-SOP-8L

Cl 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOP-8L		3000		

5