ESD TVS MOS LDO Diode Sensor DC-DC # **Product Specification** | Domestic Part Number | SMF05CT1G | |--------------------------|-----------| | Overseas Part Number | SMF05CT1G | | ▶ Equivalent Part Number | SMF05CT1G | #### TVS Diode Array For ESD and Latch-Up Protection #### Descriptions The SMF series TVS arrays are designed to protect sensitive electronics from damage or latch-up due to ESD and other voltage-induced transient events. They are designed for use in applications where board space is at a premium. Each device will protect up to five lines. They are unidirectional devices and may be used on lines where the signal polarities are above ground. TVS diodes are solid-state devices designed specifically for transient suppression. They feature large cross-sectional area junctions for conducting high transient currents. They offer desirable characteristics for board level protection including fast response time, low operating and clamping voltage, and no device degradation. The SMF series devices may be used to meet the immunity requirements of IEC 61000-4-2, level 4. The small SC70 package makes them ideal for use in portable electronics such as cell phones, PDA's, notebook computers, and digital cameras. #### Features - ◆ ESD protection for data lines to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns) - ◆ Small package for use in portable electronics - ◆ Protects five I/O lines - Working voltage: 5V - Low leakage current - ◆ Low operating and clamping voltages - ◆ Solid-state silicon-avalanche technology #### Applications - ◆ Cellular Handsets and Accessories - ◆ Cordless Phones - ◆ Personal Digital Assistants (PDA's) - Notebooks and Handhelds - ◆ Portable Instrumentation - ◆ Digital Cameras - Peripherals - MP3 Players ■ Simplified outline(SOT-363) Schematic & PIN Configuration Circuit Diagram 1 #### ■ Absolute Maximum Ratings Ta = 25°C | Rating | Symbol | Value | Units | | |--|------------------|------------------|-------|--| | Peak Pulse Power (tp = 8/20μs) | P _{pk} | 100 | Watts | | | Peak Pulse Current (tp = 8/20μs) | I _{PP} | 8 | А | | | ESD per IEC 61000-4-2 (Air)
ESD per IEC 61000-4-2 (Contact) | V _{ESD} | 20
15 | kV | | | Lead Soldering Temperature | T _L | 260 (10 seconds) | °C | | | Operating Temperature | T _J | -55 to +125 | °C | | | Storage Temperature | T _{STG} | -55 to +150 | °C | | #### ■ Electrical Characteristics Ta = 25 °C #### SMF05C | Parameter Symb | | Conditions | Minimum | Typical | Maximum | Units | |---------------------------|------------------|---------------------------------|---------|---------|---------|-------| | Reverse Stand-Off Voltage | V _{RWM} | | | | 5 | V | | Reverse Breakdown Voltage | V _{BR} | I _t = 1mA | 6 | | | V | | Reverse Leakage Current | I _R | V _{RWM} = 5V, T=25°C | | | 5 | μΑ | | Clamping Voltage | V _c | $I_{pp} = 5A, t_p = 8/20\mu s$ | | | 9.8 | V | | Clamping Voltage | V _c | $I_{pp} = 8A, t_p = 8/20 \mu s$ | | | 12.5 | V | | Junction Capacitance | C _j | V _R = OV, f = 1MHz | | | 130 | pF | #### Non-Repetitive Peak Pulse Power vs. Pulse Time #### **Power Derating Curve** #### **Pulse Waveform** #### Clamping Voltage vs. Peak Pulse Current #### Capacitance vs. Reverse Voltage ## ESD Clamping Characteristics (8kV Contact Discharge per IEC 61000-4-2) #### **Device Connection for Protection of Five Data Lines** The SMF05C is designed to protect up to five unidirectional data lines. The device is connected as follows: Unidirectional protection of five I/O lines is achieved by connecting pins 1, 3, 4, 5 and 6 to the data lines. Pin 2 is connected to ground. The ground connection should be made directly to the ground plane for best results. The path length is kept as short as possible to reduce the effects of parasitic inductance in the board traces. ### Circuit Board Layout Recommendations for Suppression of ESD. Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended: - Place the SMF05C near the input terminals or connectors to restrict transient coupling. - Minimize the path length between the SMF05C and the protected line. - Minimize all conductive loops including power and ground loops. - The ESD transient return path to ground should be kept as short as possible. - Never run critical signals near board edges. - Use ground planes whenever possible. #### **Matte Tin Lead Finish** Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin does not have any added alloys that can cause degradation of the solder joint. #### SMF05C Circuit Diagram #### **Protection of Five Unidirectional Lines** #### ■ SOT-363 #### **DIMENSIONS** (mm are the original dimensions) | UNIT | Α | A ₁
max | bp | С | D | E | е | e ₁ | HE | Lp | ø | v | w | у | |------|------------|-----------------------|--------------|--------------|------------|--------------|-----|----------------|------------|--------------|--------------|-----|-----|-----| | mm | 1.1
0.8 | 0.1 | 0.30
0.20 | 0.25
0.10 | 2.2
1.8 | 1.35
1.15 | 1.3 | 0.65 | 2.2
2.0 | 0.45
0.15 | 0.25
0.15 | 0.2 | 0.2 | 0.1 | ### Disclaimer EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice. EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application. EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI. The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.