

30V N-Channel Enhancement Mode MOSFET

Description

The SX4406A uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =12A

 $R_{DS(ON)} < 12m\Omega @ V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Max.	Units
VDSS	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±20	V
lo@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V¹	12	А
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	8	А
Ідм	Pulsed Drain Current note1	48	А
Eas	Single Pulsed Avalanche Energy	16	mJ
P o@T a=25℃	Total Power Dissipation ⁴	3	W
RеJA	Thermal Resistance, Junction to Ambient	46	°C/W
TJ, Tstg	Operating and Storage Temperature Range	-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, Ip=250µA	30	33	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μΑ
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	Vos=Vgs, Io=250µA	1.2	1.6	2.5	V
RDS(on)	Static Drain-Source on-Resistance note3	V _{GS} =10V, I _D =13A	-	8.5	12	
RDS(on)	Static Drain-Source on-Resistance note3	Vgs=4.5V, ID=10A	-	13	18	mΩ
Ciss	Input Capacitance		-	900	-	pF
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1.0MHz	-	140	-	pF
Crss	Reverse Transfer Capacitance		-	120	-	pF
Qg	Total Gate Charge		-	19	-	nC
Qgs	Gate-Source Charge	V _{DS} =15V, I _D =10A, V _{GS} =10V	-	6.3	-	nC
Qgd	Gate-Drain("Miller") Charge		-	4.5	-	nC
td(on)	Turn-on Delay Time		-	6	-	ns
t r	Turn-on Rise Time	V _{DS} =15V, I _D =6A, R _{GEN} =3Ω,	-	5	-	ns
td(off)	Turn-off Delay Time	Vgs=10V	-	25	-	ns
t f	Turn-off Fall Time		-	7	-	ns
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	12	Α
ISM	Maximum Pulsed Drain to Source Dioc	urce Diode Forward Current		-	48	Α
VSD	Drain to Source Diode Forward Voltage	Vgs=0V, Is=12A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time		_	7	-	ns
Qrr	Body Diode Reverse Recovery Charge	l⊧=10A,dI/dt=100A/μs	-	6.3	-	nC

Note:

- 1 . The data tested by surface mounted on a 1 inch FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , Pulse Width≤300µs, Duty Cycle≤0.5%
- 3 . The EAS data shows Max. rating . The test condition is T_J=25 $^{\circ}$ C, VGs=10V, RG=25 Ω , L=0.5mH, IAS=8A
- 4. The power dissipation is limited by 150°C junction temperature
- 5 . The data is theoretically the same as 10 and 10M , in real applications , should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

3

www.sxsemi.com

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs.

Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

4

www.sxsemi.com

Package Mechanical Data-SOP-8

Symbol	Dimensions I	n Millimeters	Dimensions	s In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1.350	1. 550	0.053	0.061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0.150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	O (BSC)	0. 05	0 (BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

	<u>. </u>		
Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

5