

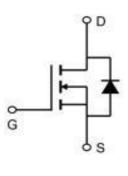
Description

The SX110N04NF uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 10V. This device is suitable for use as a Battery protection or in other Switching application.

PDFN5*6-8L

General Features

V_{DS} = 40V I_D =110A


 $R_{DS(ON)} < 4.3 m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Symbol N5*(6-8L Parameter	Rating	Units
VDS	Drain-Source Voltage	40	V
VGS	Gate-Source Voltage	±20	V
lo@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	110	Α
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V¹	78	Α
IDM	Pulsed Drain Current ²	440	Α
EAS	Single Pulse Avalanche Energy ³	195	mJ
IAS	Avalanche Current	42	Α
P □@Tc=25 °C	Total Power Dissipation ⁴	108	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	${\mathbb C}$
R⊕JA	Thermal Resistance Junction-Ambient ¹	62	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	1.4	°C /W

1

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =1mA		0.052		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=30A		3.5	4.3	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , ID=20A		5.4	7.5	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , lp =250uA	1.2	1.6	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -230UA	-	-5.76		mV/℃
IDOO	Drain-Source Leakage Current	Vɒs=40V , Vgs=0V , Tɹ=25℃			1	uA
IDSS		V _{DS} =40V , V _{GS} =0V , T _J =55℃			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V	-		±100	nA
gfs	Forward Transconductance	VDS=5V , ID=30A		42		s
Qg	Total Gate Charge (4.5V)	Vps=48V , Vgs=10V , Ip=30A		65		
Qgs	Gate-Source Charge			12.5		nC
Qgd	Gate-Drain Charge			15		
Td(on)	Turn-On Delay Time	V_{DD} =30 V , V_{GS} =10 V , R_{G} =4.7 Ω , I_{D} =15 A		12		
Tr	Rise Time			16		ns
Td(off)	Turn-Off Delay Time			39		
Tf	Fall Time			15		
Ciss	Input Capacitance			5595		
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		411		pF
Crss	Reverse Transfer Capacitance			340		
IS	Continuous Source Current ^{1,5}				110	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			440	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=30A , Tյ=25℃			1.2	V
trr	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,	1	22		nS
Qrr	Reverse Recovery Charge	TJ=25℃		11		nC

Note:

- 1 The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 、 The data tested by pulsed , pulse width $\ \le 300 \text{us}$, duty cycle $\ \le 2\%$
- $3\$ The EAS data shows Max. rating . TJ=25 $^\circ$ C, VDD=32V, VG=10V, RG=25 Ω , L=0.1mH, IAS =42A
- $4\mathrel{\diagdown}$ The power dissipation is limited by $150\mathrel{{}^{\circ}\!\!}\mathrm{C}\mathrm{junction}$ temperature
- $5\sqrt{100}$ The data is theoretically the same as 1 D and 1 DM , in real applications , should be limited by total power dissipation.

2

Typical Characteristics

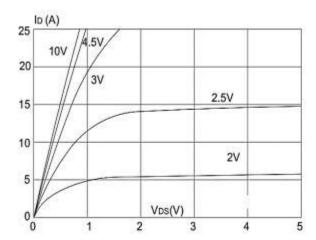


Figure1: Output Characteristics

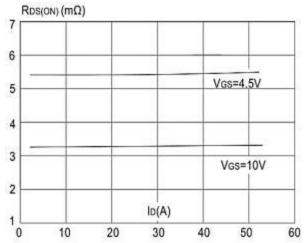


Figure 3:On-resistance vs. Drain Current

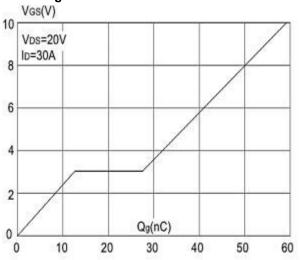


Figure 5: Gate Charge Characteristics

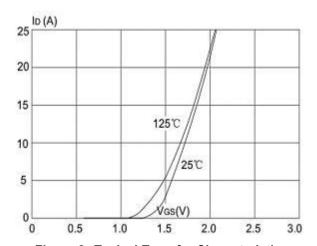


Figure 2: Typical Transfer Characteristics

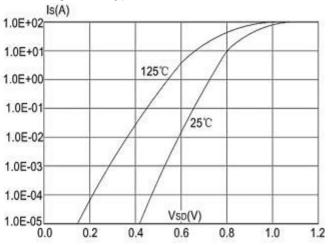


Figure 4: Body Diode Characteristics

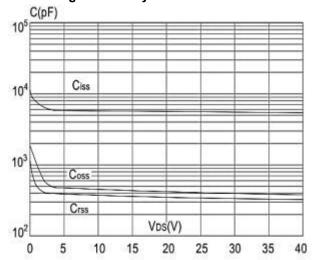


Figure 6: Capacitance Characteristics

Typical Characteristics

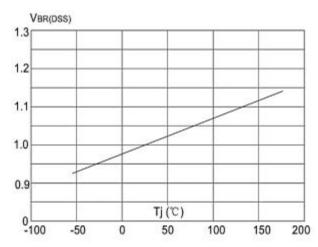


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

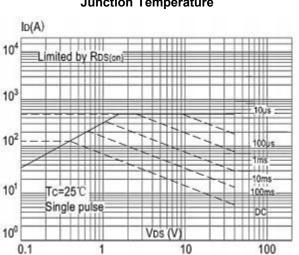


Figure 9: Maximum Safe Operating Area

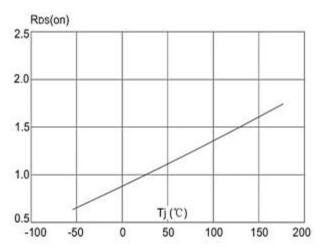


Figure 8: Normalized on Resistance vs.

Junction Temperature

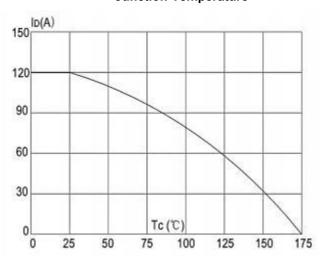


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

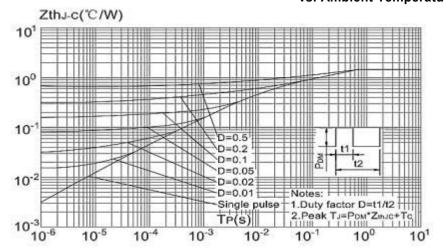
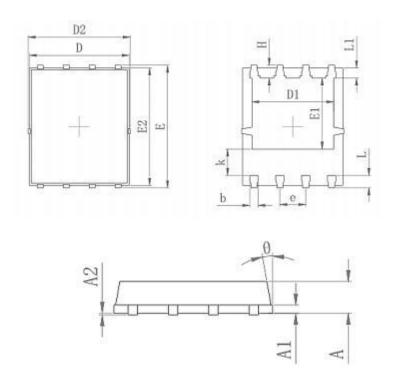



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data-PDFN5*6-8L-JQ Single

	Common			
Symbol	m	mm		
	Mim	Max		
Α	0.900	1.100		
A1	0.2	254		
A2	0-0.05			
D	4.824	4.976		
D1	3.910	4.110		
D2	4.944	5.076		
E	5.924	6.076		
E1	3.375	3.575		
E2	5.674	5.826		
b	0.350	0.450		
е	1.270			
L	0.534	0.686		
L1	0.424	0.576		
К	1.190	1.390		
Н	0.549	0.701		
	8°	12°		

Package Marking and Ordering Information

dekage marking and Ordering information							
Product ID	Pack	Marking	Qty(PCS)				
TAPING	PDFN5*6-8L		5000				

5