

-60V P-Channel Enhancement Mode MOSFET

Description

The SX15P06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = -60V I_D =-15A

 $R_{DS(ON)} < 28m\Omega @ V_{GS}=-10V$

Application

BMS

Low voltage switch

Electric tool

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage -60		V	
VGS	Gate-Source Voltage ±20		V	
lo@Tc=25°C	Continuous Drain Current, -V _{GS} @ -10V ¹	ntinuous Drain Current, -V _{GS} @ -10V ¹ -15		
lo@Tc=100℃	Continuous Drain Current, -V _{GS} @ -10V ¹	@ -10V ¹ -8.5		
IDM	Pulsed Drain Current ²	-45	А	
EAS	Single Pulse Avalanche Energy ³	113	mJ	
P o@T c= 25 °C	Total Power Dissipation ⁴	52.1	W	
TSTG	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
R₀JA	Thermal Resistance Junction-Ambient ¹	85	°C/W	
R₀JC	Thermal Resistance Junction-Case ¹	2.4	°C/W	

-60V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (Tc=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-60	-68		V	
△BVDSS/△TJ	BVpss Temperature Coefficient	Reference to 25℃, I _D =-1mA		-0.035		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-10V , ID=-12A		20	28	mΩ	
ND3(ON)		V _G S=-4.5V , I _D =-8A		26	33		
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.0	-1.6	-2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID2000A		4.28		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =25℃			1	uA	
1033	Dialii-Source Leakage Guireili	V _{DS} =-48V , V _{GS} =0V , T _J =55℃			5	uA	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=-10V , ID=-18A		23		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		7		Ω	
Qg	Total Gate Charge (-4.5V)			25		nC	
Qgs	Gate-Source Charge	VDS=-20V, VGS=-4.5V, ID=- 12A		6.7			
Qgd	Gate-Drain Charge			5.5			
Td(on)	Turn-On Delay Time			38			
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V , R _G =3.3Ω,		23.6			
Td(off)	Turn-Off Delay Time	lp=-1A		100		ns	
Tf	Fall Time	- ID17A		6.8		,	
Ciss	Input Capacitance			3635			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		224		pF	
Crss	Reverse Transfer Capacitance			141			
ls	Continuous Source Current ^{1,5}	V V 0V 5			-35	Α	
ISM	Pulsed Source Current ^{2,5}	- V _G =V _D =0V , Force Current			-70	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1	V	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is VDD=-48V,VGS =-10V,L=0.1mH,IAS =-47.6A
- 4. The power dissipation is limited by 150 $\!\!\!^{\circ}\!\!\!^{\circ}$ junction temperature
- 5, The data is theoretically the same as 1 D and 1 DM , in real applications , should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} v.s T_J

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} v.s T_J

Typical Characteristics

Fig.9 Normalized Maximum Transient Thermal Impedance

t, Pulse Width (s)

0.01

0.001

0.0001

SINGLE PULSE

0.01 0.00001

Fig.10 Switching Time Waveform

 $T_Jpeak = T_C + P_{DM} x R_{\theta JC}$

Fig.11 Unclamped Inductive Waveform

Package Mechanical Data-SOP-8L

Ch - I	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000

5