

40V N+P-Channel Enhancement Mode MOSFET

Description

The SX20G04S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} =40V I_D =28A

 $R_{DS(ON)} < 10m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -40V I_{D} = -23A$

 $R_{DS(ON)} < 18m\Omega$ @ $V_{GS}=-10V$

Application

BLDC

Absolute Maximum Ratings (Tc=25℃ unless otherwise noted)

Symbol	Parameter N-Ch P-Ch		P-Ch	Units
V _D s	Drain-Source Voltage	40	-40	V
Vgs	Gate-Source Voltage	±20	±20	V
b@T c=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	28	-23	А
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V¹	17 -15		А
Ірм	Pulsed Drain Current ²	68 -69		А
EAS	Single Pulse Avalanche Energy ³	128	185	mJ
P □@T c=25°C	Total Power Dissipation ⁴	48	51.3	W
Тѕтс	Storage Temperature Range	-55 to 150		$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150		$^{\circ}$ C
RөJA	Thermal Resistance Junction-Ambient ¹	85		°C/W
Rejc	Thermal Resistance Junction-Case ¹	2.3		°C/W

1

Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, lo=1mA		0.028		V/°C	
RDS(ON)	Static Drain-Source On-Resistance	Vgs=10V , ID=30A		8.0	10	mΩ	
KD3(ON)	Static Drain-Source On-Nesistance	Vgs=4.5V , ID=15A		10	16		
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.5	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	VG5-VD5 , ID -230UA		-6.16		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =40V , V _{GS} =0V , T _J =25℃			1	uA	
1033	Diain-Source Leakage Guiteiit	V _{DS} =40V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=5V , ID=30A		22		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.4	Ω	
Qg	Total Gate Charge (4.5V)			37			
Qgs	Gate-Source Charge	Vps=20V , Vgs=10V , Ip=25A		6		nC	
Qgd	Gate-Drain Charge			7			
Td(on)	Turn-On Delay Time			12			
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =1Ω		12			
Td(off)	Turn-Off Delay Time	b=25A		38		ns	
Tf	Fall Time			9			
Ciss	Input Capacitance			2400			
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		192		pF	
Crss	Reverse Transfer Capacitance			165			
ls	Continuous Source Current ^{1,5}				50	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			200	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V	
trr	Reverse Recovery Time	IF=30A,		22		nS	
Qrr	Reverse Recovery Charge	dl/dt=100A/μs ,Tյ=25℃		11		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- $3\sqrt{100}$ The EAS data shows Max. rating . The test condition is VDD=36V,VGS =10V,L=0.1mH,IAS =16A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- 5 . The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

2

www.sxsemi.com

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , In=-250uA	-40	-44		V
△BVɒss/△T	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.023		V/°C
	Static Dusin Source On Besistance?	Vgs=-10V , ID=-30A		13	18	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-4.5V , ID=-20A		18	25	mΩ
V _{GS} (th)	Gate Threshold Voltage)/)/ L 050 A	-1.0	-1.6	-2.5	V
△VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id=-250uA		4.74		mV/℃
	Drain Source Leakage Current	V _{DS} =-40V , V _{GS} =0V , T _J =25℃			1	uA
IDSS	IDSS Drain-Source Leakage Current VDS=-40V, VGS=0V, TJ=55	V _{DS} =-40V , V _{GS} =0V , T _J =55°C			5	uA
lgss	Gate-Source Leakage Current	Vgs=±20V, Vps=0V			±100	nA
Qg	Total Gate Charge (-4.5V)			25		
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , l _D =-12A		11		nC
Qgd	Gate-Drain Charge	ID=-12/A		9.5		
Td(on)	Turn-On Delay Time			48		
Tr	Rise Time	VDD =-15V, RL=15Ω		24		
Td(off)	Turn-Off Delay Time	ID =-1A, VGEN =-10V, RG =6Ω		88		ns
Tf	Fall Time			9.6		
Ciss	Input Capacitance			2760		
Coss	Output Capacitance	V _{DS} =-20V , V _{GS} =0V , f=1MHz		260		pF
Crss	Reverse Transfer Capacitance			85		
ls	Continuous Source Current ^{1,5}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			-40	Α
lsм	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			-90	Α
VsD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.3	V

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3 、 The EAS data shows Max. rating . The test condition is VDD=-32V,VGS=-10V,L=0.1mH,IAS=-18A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- $5\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

3

www.sxsemi.com

N-Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

N-Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area vs. Case Temperature

Figure 8: Normalized on Resistance vs
Junction Temperature

Figure 10: Maximum Continuous Drain Current

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

5

www.sxsemi.com

P-Typical Characteristics

Figure.1 On Resistance Vs Junction Temperature

Figure.3: Capacitance

Figure.5: Threshold Voltage

Figure.2: On-Resistance Vs.Drain Current

Figure.4: On-Resistance Vs. Gate-to-Sourece Voltage

Figure.6: On-Region Characteristics

P-Typical Characteristics

Figure.7: Gate Charge

Figure.9: Safe Operating Area

Figure.8: Body-diode Characteristice

Figure.10: Single Pluse Maximum Power Dissipation

Figure.11: Normalized Maximum Transient Thermal Impedance

Package Mechanical Data-SOP-8L

Cl 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000