

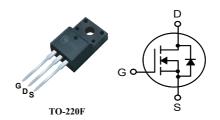
60V N-Channel MOSFET

General Description

The CMF50N06T is extremely high-density N-channel MOSFET, which provides the best RDSON and gate charge for the synchronous buck converter applications.

Features

- 50A,60V.RDs(ON)=16mΩ @VGS=10V
- Fast Switching
- N-channel-Enhancement mode
- Low Threshold Drive
- 100% Avalanche Tested


Product Summary

BVDSS	RDSON	ID
60V	16mΩ	50A

Applications

- Power Supplies
- DC-DC & DC-AC Converters
- Motor Control, Audio Amplifiers
- High Current, High Speed Switching
- Solenoid And Relay Drivers

TO-220F Pin Configuration

Туре	Package	Marking		
CMF50N06T	TO-220F	CMF50N06T		

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	60	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current ¹	50	Α	
I _D @T _C =100℃	Continuous Drain Current ¹	30	А	
I _{DM}	Pulsed Drain Current ²	150	А	
EAS	Single Pulse Avalanche Energy ³	156	mJ	
I _{AS}	Avalanche Current	25	Α	
P _D @T _C =25°C	Total Power Dissipation	45	W	
T _{STG}	Storage Temperature Range -55 to 175		$^{\circ}$ C	
T_J	Operating Junction Temperature Range	-55 to 175	$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		65	°C/W	
R _{0JC}	Thermal Resistance Junction-case		1.4	°C/W	

60V N-Channel MOSFET

Electrical Characteristics (T $_{J}$ =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		14	16	mΩ
1 (D3(ON)		V _{GS} =4.5V, I _D =15A		17	20	11122
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1		3	V
_	Drain Source Leakage Current	V _{DS} =60V , V _{GS} =0V			1	uA
I _{DSS}	Drain-Source Leakage Current	V_{DS} =60V , V_{GS} =0V , T_{C} =125 $^{\circ}$ C			10	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V,I _D =10A		20		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.6		Ω
Q_g	Total Gate Charge	I _D =50 A		30		
Q_gs	Gate-Source Charge	V _{DS} =48 V		8.5		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =5V		16		
$T_{d(on)}$	Turn-On Delay Time	V _{DS} =30 V		17		
T _r	Rise Time	I _D =22.5A		160		ns
$T_{d(off)}$	Turn-Off Delay Time	R _G =6.9Ω		69		
T _f	Fall Time	V _G s=10V		70		
C _{iss}	Input Capacitance			2900		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		580		pF
C _{rss}	Reverse Transfer Capacitance			120		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	V _G =V _D =0V . Force Current			50	Α
I _{SM}	Pulsed Source Current ²	V _G =V _D =UV , Force Current			150	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =20 A , T _J =25℃			1.32	V

Note

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.} The data tested by pulsed , pulse width \leq 300 us , duty cycle \leq 2%.

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =40V, V_{GS} =10V,L=0.5mH,I_{AS}=25A.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.