

HACD1204QN型

低抖动LVDS时钟缓冲器 产品说明书

成都华奥创芯科技有限公司

1 产品概述

HACD1204QN 是一款 2.0GHz, 4 路输出差分高性能时钟扇出缓冲器,它将两个可选输入时钟之一分配给四对差分 LVDS 时钟输出,输入信号可以是 LVDS、LVPECL 或 LVCMOS,最高时钟频率可达 2.0GHz。该器件专为高频、低相位噪声时钟和数据信号的信号扇出而设计。

2 产品特性

- a) 2: 4 差分时钟缓冲器;
- b) 通用输入接受 LVPECL、LVDS、HCSL 和 LVCMOS;
- c) 四路 LVDS 输出;
- d) 最大输出频率 (LVDS): 2.0GHz;
- e) 最大传播延迟: 500ps (典型值);
- f) 输出偏斜: 50ps (典型);
- g) 低附加抖动@156.25MHz: 100fs RMS (10kHz~20MHz);
- h) 电源电压: 3.3V 或 2.5V;
- i) 与 TI 公司的 CDCLVD1204 引脚兼容;
- j) 封装形式为 QFN16, 塑封。

3 功能描述

表1 输入选择真值表

IN_SEL	时钟输入
0	INPO, INNO
1	INP1, INN1

4 原理框图

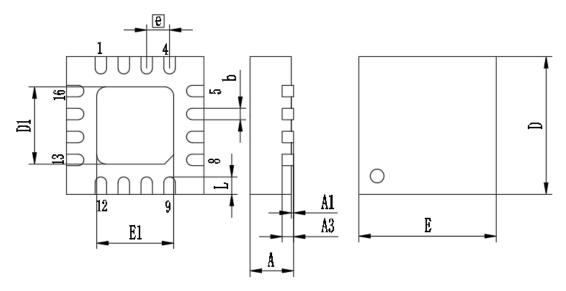
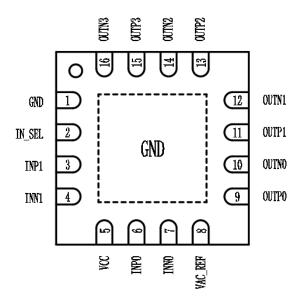

产品的功能原理框图如图 1 所示。

图1功能框图

5 封装形式及尺寸

HACD1204QN 采用 QFN16 封装,具体封装尺寸如图 2 所示。



尺寸符号		数值(单位: mm)	
人力和名	最小	公称	最大
A	0.80	0.90	1.00
A1	0	0.02	0.05
A3		0.20	1
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D1	1.60	1.70	1.80
E1	1.60	1.70	1.80
b	0.20	0.25	0.30
e		0.5BSC	
L	0.30	0.40	0.50

图2 HACD1204QN 封装尺寸图

6 引出端排列图

注:底部焊盘 PAD (即 GND) 必须连接至 VEE。

图3 HACD1204QN 引出端排列图(顶视图)

表2 HACD1204QN 引出端功能表

引出端 序号	符号	I/O	功能	
1	GND		接地	
2	INSEL	I	输入选择,内部 150k Ω下拉电阻。	
3	INP1	I	差分或单端输入	
4	INN1	I	差分时钟输入	
5	VCC	I	电源	
6	INP0	I	冗余差分输入或单端输入	
7	INN0	I	反向差分时钟	
8	V_{AC_REF}	О	基准输出电压。如果使用,建议在此引脚上使用 0.1 μ F 至 GND。	
9	OUTP0	О	差分 LVDS 时钟输出对 0	
10	OUTN0	О	差分 LVDS 时钟输出对 0	
11	OUTP1	О	差分 LVDS 时钟输出对 1	
12	OUTN1	О	差分 LVDS 时钟输出对 1	
13	OUTP2	0	差分 LVDS 时钟输出对 2	

14	OUTN2	О	差分 LVDS 时钟输出对 2		
15	OUTP3	О	差分 LVDS 时钟输出对 3		
16	OUTN3	0	差分 LVDS 时钟输出对 3		

7 绝对最大额定值

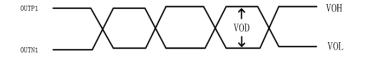
参数	符号	最小值	最大值	单位
电源电压	VCC	0.5	4.6	V
输入电压	VIN	-0.5	VCC+0.5	V
结温范围	T_{J}		125	${\mathbb C}$
储藏温度	T_{STG}	-65	150	$^{\circ}$

8 推荐工作条件

参数	符号	最小值 最大值		单位
电源电压	VCC	3.135	3.465	V
电源电压	VCC	VCC 2.375 2.625		V
工作温度	T_{A}	-40	85	$^{\circ}$

9 电特性

除另有规定外, $VCC=2.5V\pm5\%$,-40 $\mathbb{C} \leqslant T_A \leqslant 85$ \mathbb{C} ,产品的电特性见表 3 所示。


表3 电特性

参数	然 旦	符号 条件	参数值			录 5÷		
多	付亏		最小	典型	最大	单位		
选择控制特性	选择控制特性							
输入高电压	VIH	1	0.7VCC			V		
输入低电压	VIL				0.3VDD	V		
输入高电流	IIH	$VCC = 2.625 V, V_{IH} = 2.625 V$			30	μΑ		
输入低电流	IIL	$VCC = 2.625 \text{ V}, V_{IL} = 0 \text{ V}$			-30	μΑ		
下拉电阻	R _{pull} (IN_SEL)			150		kΩ		
LVCMOS 输之	λ特性		<u> </u>		<u> </u>			
输入频率	F_{IN}		0.1		250	MHz		
输入阈值电 压	V_{th}	施加到互补输入端的外部阈值 电压	1.1		1.5	V		
输入高电压	V_{IH}		1.2		VCC	V		
输入低电压	V_{IL}		0		1.4	V		
输入高电流	I_{IH}	$VCC = 2.625V, V_{IH} = 2.625V$			10	μΑ		

输入低电流	$I_{ m IL}$	VCC= 2.625V, V _{IL} =0V			-10	μA		
转换速率	$\Delta V/\Delta T$	20%到 80%	1.5			V/ns		
差分输入特性								
输入频率	F _{IN}		0.1		2000	MHz		
差分输入电 压(峰峰值)	VIN,DIF	V _{ICM} =1.25V	0.3		1.6	V _{P-P}		
输入共模电 压	$V_{\rm ICM}$	VIN, DIFF, PP > 0.4	1		VCC-0.3	V		
输入高电流	I_{IH}	VCC= 2.625V, V _{IH} = 2.625V			10	μΑ		
输入低电流	I_{IL}	VCC= 2.625V, V _{IL} =0V			-10	μΑ		
转换速率	$\Delta V/\Delta T$	20%到 80%	0.75			V/ns		
输入电容	C_{IN}			2.5		pF		
LVDS 输出特	性(VCC=3.3V	/±5%)				•		
差分输出电 压幅值	V _{OD}	VIN, DIFF,RL=100 Ω	250		450	mV		
差分输出电 压幅值变化	ΔV_{OD}	VIN, DIFF,RL=100 Ω	-15		15	mV		
稳态模式输 出电压	V _{OC(ss)}	VIN, DIFF,RL=100 Ω	1.1		1.375	V		
稳态模式输 出电压幅值 变化	$\Delta V_{OC(ss)}$	VIN, DIFF,RL=100 Ω	-15		15	V		
输出过冲或 下冲	Vring	输出幅度 VoD 的百分比			10%			
输出交流共 模	V _{OS}	VIN, DIFF, PP=0.6V, RL=100 Ω		25	70	mV_{P-P}		
短路输出电 流	I_{OS}	V _{OD} =0V	-24		+24	mA		
传播延迟	t_{PD}	VIN, DIFF, PP=0.3V		0.5	1.5	ns		
输出偏斜	$t_{SK,O}$			10	50	ps		
脉冲偏斜	$t_{SK,P}$	50%占空比输入,交叉点间失真	-50		50	ps,RMS		
随机附加抖 动	t_{RJIT}	50%占空比输入,边缘速度=0.75 V/ns, 10kHz 至 20MHz。		62	100	fs		
输出上升和 下降时间	$t_{ m R}/t_{ m F}$	20%到 80%	50	150	300	ps		

10 典型性能特征

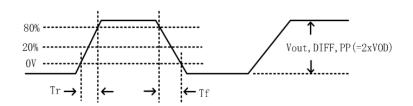


图4输出电压和上升/下降时间

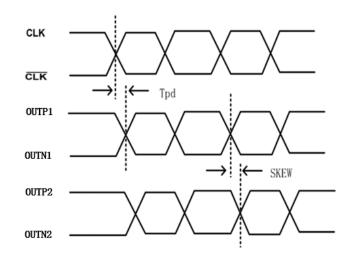


图5输出和偏斜

注:输出偏斜按以下两者中的较大值计算:作为最快和最慢 tPLHn 之间的差值($n=0,1,2\cdots.7$),或作为最快与最慢 tPHLn 之间的差($n=0,1,2\cdots.7$)。

11 典型应用及注意事项

a) 差分信号输入以接受单端电平电路

对于单端输入的 LVCMOS 信号,驱动器中的 Rs 和 R0 形成 50 Ω 阻抗匹配,定向隔离电容器 C3 避免了输入和输出之间共模电平的影响,然后通过分压器和共模电平将接收器驱动到 VCC/2。

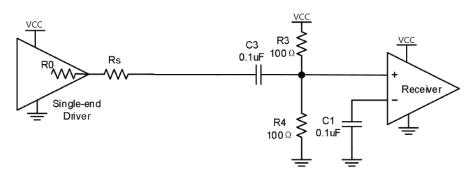


图6差分输入的单端接方法

b) 输入连接电路

CLK/CLK接受 LVDS、LVPECL、HCSL 和其他差分信号。两个差分信号都必须满足 VPP 和 VCMR 输入要求。图 7 至图 11 显示了由最常见的驱动器类型驱动的 CLK/CLK输入的接口示例。

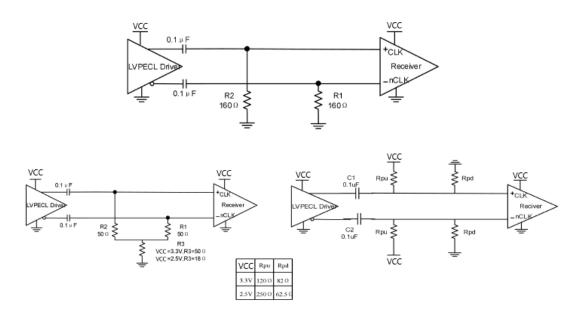


图7 LVPECL 驱动器 (AC)

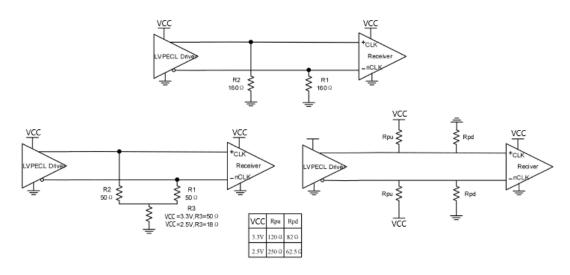


图8 LVPECL 驱动器(DC)

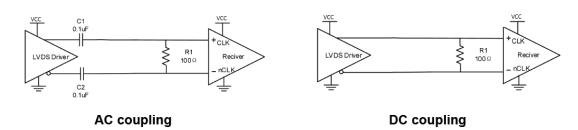


图9 LVDS 驱动器

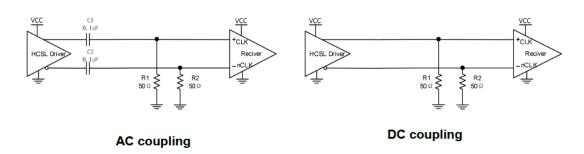


图10 HCSL 驱动器

c) 输出连接电路

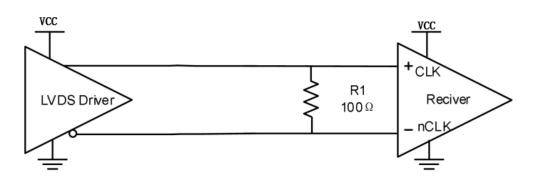


图11 LVDS 驱动器

12 订货信息

<u>HA</u> <u>CD</u> <u>1204</u> <u>QN</u>

1 2 3 4

- ① 单位简称
- ② 产品分类标识
- ③ 产品代号
- ④ 封装形式标识

13 版本修订

表4版本修订汇总表

版本	时间	描述	更改页
V1.0	2023.10.12	新建	