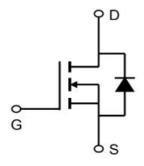


Description

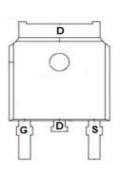
The SX80N07D uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 68V I_D =80A


 $R_{DS(ON)} < 8.6 m\Omega$ @ $V_{GS}=10V$

Application


Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25[°]C unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	68	V
VGS	Gate-Source Voltage	±20	V
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V¹	80	А
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	52	А
IDM	Pulsed Drain Current ²	320	А
EAS	Single Pulse Avalanche Energy ³	121	mJ
IAS	Avalanche Current	22	Α
P □@T c=25°C	Total Power Dissipation ⁴	116	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$ C
Tu	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
R₀JA	ReJA Thermal Resistance Junction-ambient ¹		°C/W
R₀JC	Thermal Resistance Junction-Case ¹	0.85	°C/W

Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	S Drain-Source Breakdown Voltage V _{GS} =0V , I _D =250uA		68	72		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	ent Reference to 25℃, I _D =1mA		0.023		V/℃	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=10A		6.5	8.6	mΩ	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	2.0	3.0	4.0	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VG3-VD3 , ID -230UA		-4.2		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA	
1500	Diam-Oddice Leakage Odirent	V _D s=24V , V _G s=0V , T _J =55℃			5	uA	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	fs Forward Transconductance V _{DS} =5V , I _D =10A			5.5		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω	
Qg	Total Gate Charge (4.5V)			35		nC	
Qgs	Gate-Source Charge	VDS =30V, ID =20A, VGS =10V		11			
Qgd	Gate-Drain Charge			9			
Td(on)	Turn-On Delay Time			15			
Tr	Rise Time	V DS =30V,I D =20A,		94	-	ns	
Td(off)	Turn-Off Delay Time	RGEN =6Ω, V GS =10V		46			
Tf	Fall Time			32			
Ciss	Input Capacitance			4062			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		261		pF	
Crss	Reverse Transfer Capacitance			231			
IS	Continuous Source Current ^{1,5}	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			80	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α	
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V	
trr	Reverse Recovery Time	T J =25℃		78		nS	
Qrr	Reverse Recovery Charge	I F =20A,dI/dt=100A/μs		51		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3 、The test cond \leq 300us duty cycle \leq 2%, duty cycle ition is TJ =25°C, VDD =35V, V G =10V, R G =25 Ω , L=0.5mH, IAS =22A

2

- 4. The power dissipation is limited by 175 $\!\!\!\!\!^{\circ}\!\!\!\!^{\circ}$ junction temperature
- $5\sqrt{100}$ The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

www.sxsemi.com

Typical Characteristics

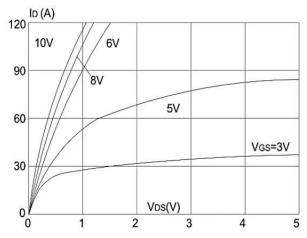


Figure1: Output Characteristics

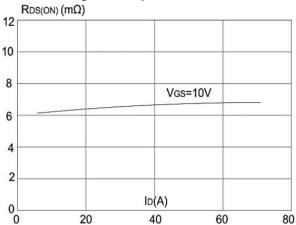
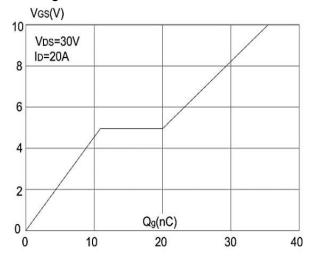



Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

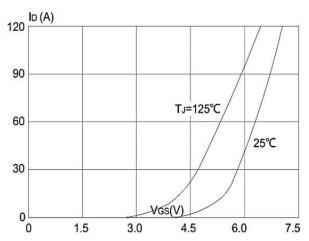
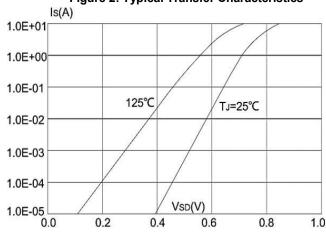



Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

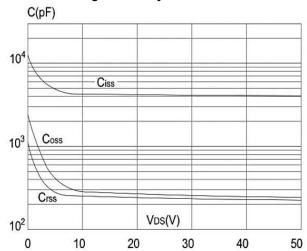


Figure 6: Capacitance Characteristics

Typical Characteristics

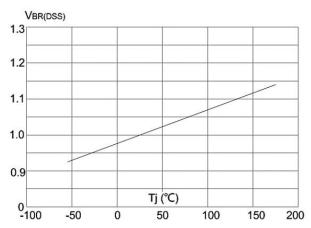


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

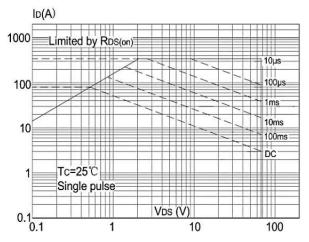


Figure 9: Maximum Safe Operating Area

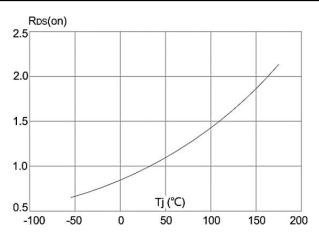


Figure 8: Normalized on Resistance vs.

Junction Temperature

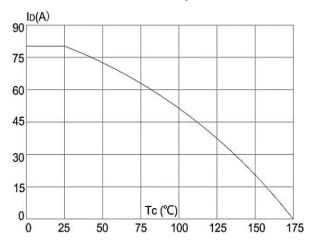


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

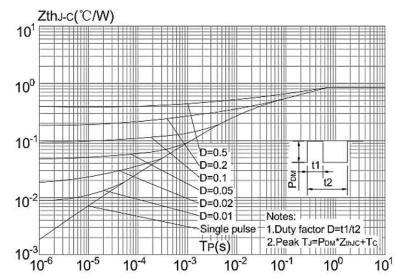
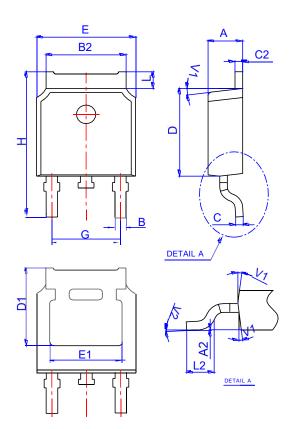



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

4

Package Mechanical Data: TO-252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF		0.209REF			
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Package Marking and Ordering Information

r dokago marking and ordoring information							
Product ID	Pack	Marking	Qty(PCS)				
TAPING	TO-252-3L		2500				

5