

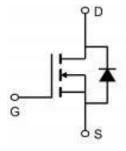
40V N-Channel Enhancement Mode MOSFET

Description

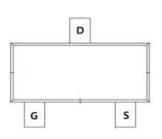
The SX3N04AI uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =3A


 $R_{DS(ON)} < 40 m\Omega$ @ $V_{GS}=10V$

Application


Wireless charging

Boost driver

LED

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Absolute Maximum Ratings (1c-25 Curiless otherwise noted)				
Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	40	V	
Vgs	Gate-Source Voltage	±20	V	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	3	А	
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.9	А	
Ірм	Pulsed Drain Current ²	15	А	
EAS	Single Pulse Avalanche Energy³	16.2	mJ	
P o@T a=25°C	Total Power Dissipation ⁴	1.67	W	
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	
Reja	Thermal Resistance Junction-Ambient ¹	125	°C/W	
Rejc	Thermal Resistance Junction-Case ¹	30	°C/W	

1

40V N-Channel Enhancement Mode MOSFET

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.032		V/°C
DDC(ON)	Otatia Dunin Causas On Basistanas?	Vgs=10V , Ip=4A		28	40	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , In=3A		35	50	
VGS(th)	Gate Threshold Voltage	\/ \/ 050A	1.0	1.5	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =250uA		-4.5		mV/℃
IDSS	Duein Course Leekens Cument	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	uA
וחפפ	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		8		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.4	4.8	Ω
Qg	Total Gate Charge (4.5V)	Vps=15V , Vgs=4.5V , Ip=3A		5		nC
Qgs	Gate-Source Charge			1.54		
Qgd	Gate-Drain Charge			1.84		
Td(on)	Turn-On Delay Time			7.8		ns
Tr	Rise Time	V_{DD} =15 V , V_{GS} =10 V , R_{G} =3.3 Ω		2.1		
Td(off)	Turn-Off Delay Time			29		
Tf	Fall Time	lo=1A		2.1		
Ciss	Input Capacitance			452		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		51		pF
Crss	Reverse Transfer Capacitance			38		
IS	Continuous Source Current ^{1,4}	V V 0V 5			4.5	Α
ISM	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			14	Α
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2_{\times} The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3. The power dissipation is limited by 150 $\!\!\!\!^{\circ}\!\!\!\!^{\circ}$ junction temperature
- $4_{\tiny N}$ The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

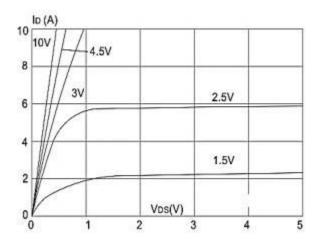


Figure1: Output Characteristics

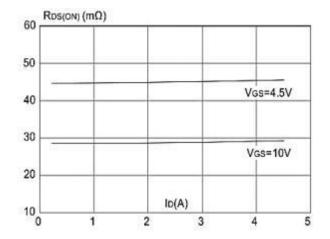
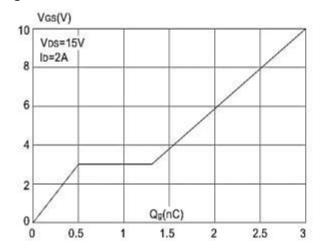
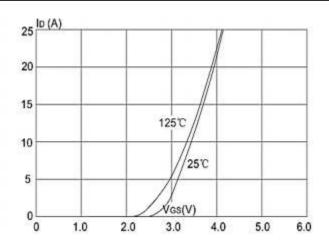





Figure 3:On-resistance vs. Drain Current

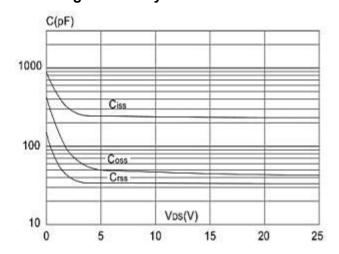

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

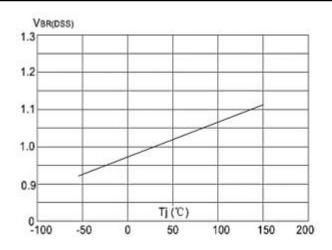


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

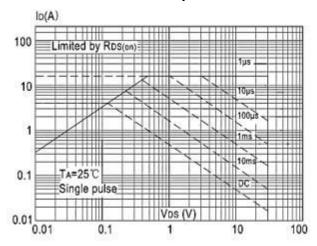


Figure 9: Maximum Safe Operating Area vs. Case Temperature

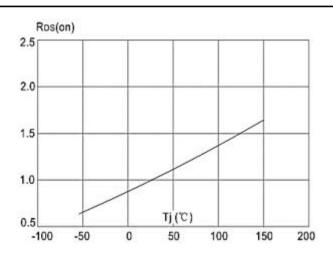
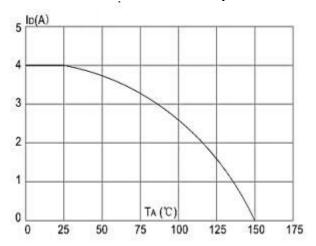
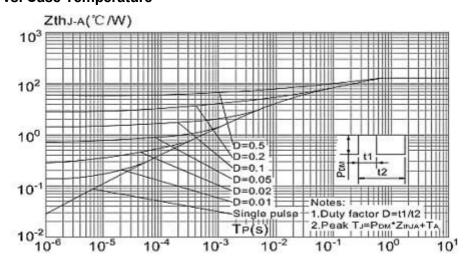
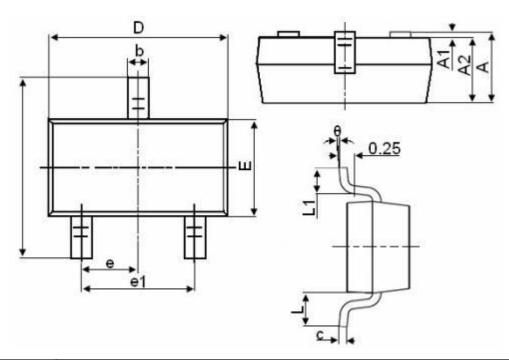



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

4

www.sxsemi.com

Package Mechanical Data-SOT23-XC-Single

Cymahal	Dimensions in Millimeters		
Symbol	MIN.	MAX.	
Α	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
Е	1.200	1.400	
E1	2.250	2.550	
е	0.950TYP		
e1	1.800	2.000	
L	0.550REF		
L1	0.300	0.500	
θ	0°	8°	

Package Marking and Ordering Information

i	. dokago marking and ordoring information					
	Product ID	Pack	Marking	Qty(PCS)		
	TAPING	SOT23		3000		

5