

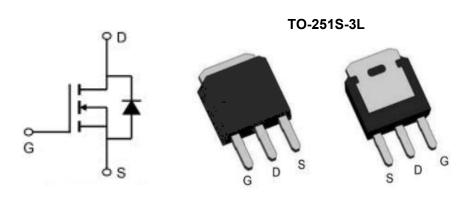
30V N-Channel Enhancement Mode MOSFET

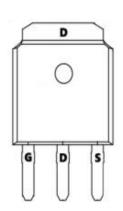
Description

The SX60N03Y uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

VDS=30V ID =60A


 $R_{DS(ON)} < 13m\Omega$ @ $V_{GS}=10V$


Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	30	V
Vgs	Gate-Source Voltage	±20	V
l b@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	50	Α
l b@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V¹	30	Α
Ірм	Pulsed Drain Current ²	112	А
EAS	Single Pulse Avalanche Energy ³	24.2	mJ
las	Avalanche Current	22	Α
P □@Tc=25°C	Total Power Dissipation ⁴	37.5	W
P D@TA=25℃	Total Power Dissipation ⁴	2.42	W
Тѕтс	Storage Temperature Range	-55 to 175	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 175	℃
Reja	Thermal Resistance Junction-Ambient ¹	62	°C/W
Rejc	Thermal Resistance Junction-Case ¹	4	°C/W

30V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T」=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , ID=250uA	30	32		V
△BVDSS/△T J	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.0193		V/℃
	Static Drain-Source On-Resistance ²	Vgs=10V , ID=30A		7.5	13	mΩ
RDS(ON)		Vgs=4.5V , ID=15A		11	18	
VGS(th)	Gate Threshold Voltage	\/ \/ \ 050 A	1.2	1.6	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-3.97		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA
		V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=5V , Ip=30A		34		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω
Qg	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		9.8		nC
Qgs	Gate-Source Charge			4.2		
Qgd	Gate-Drain Charge			3.6		
Td(on)	Turn-On Delay Time	151/11/14/14/14		4		ns
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V		8		
Td(off)	Turn-Off Delay Time	R _G =3.3Ω		31		
Tf	Fall Time	lo=15A		4		
Ciss	Input Capacitance			940		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		131		pF
Crss	Reverse Transfer Capacitance			109		
ls	Continuous Source Current ^{1,5}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			43	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			112	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , TJ=25°C			1	V
t _{rr}	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		8.5		nS
Qrr	Reverse Recovery Charge	TJ=25℃		2.2		nC

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- $3 \raisebox{-0.15ex}{$\scriptscriptstyle \sim}$ The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1Mh,IAS=22A
- 4. The power dissipation is limited by $175\,^{\circ}\!\mathrm{C}$ junction temperature
- 5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

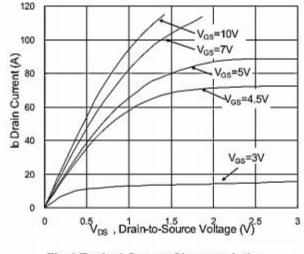


Fig.1 Typical Output Characteristics

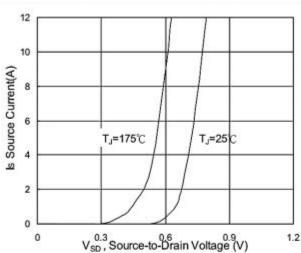


Fig.3 Forward Characteristics of Reverse

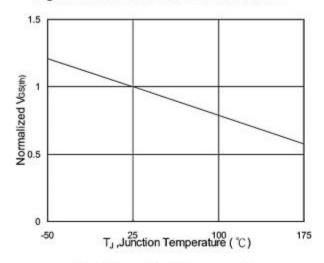


Fig.5 Normalized V_{GS(th)} vs. T_J

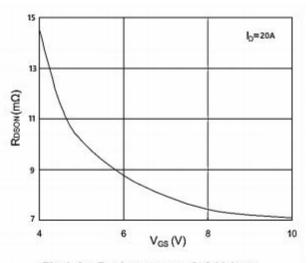


Fig.2 On-Resistance vs. G-S Voltage

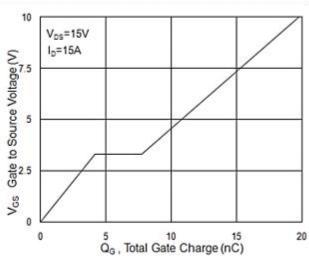


Fig.4 Gate-Charge Characteristics

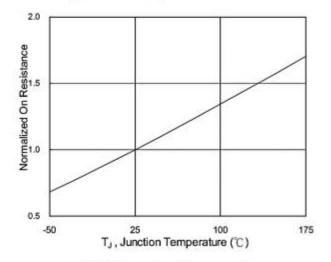
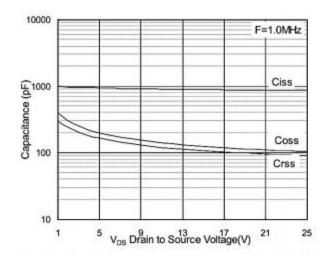



Fig.6 Normalized RDSON vs. TJ

30V N-Channel Enhancement Mode MOSFET

Typical Characteristics

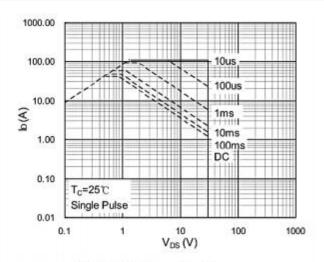


Fig.7 Capacitance

Fig.8 Safe Operating Area

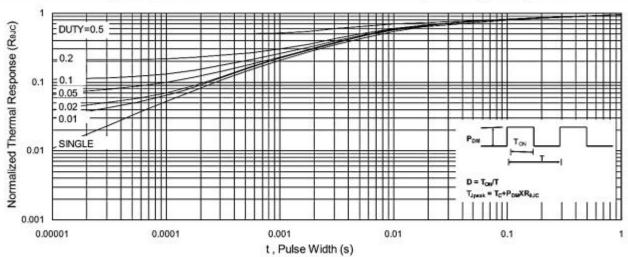


Fig.9 Normalized Maximum Transient Thermal Impedance

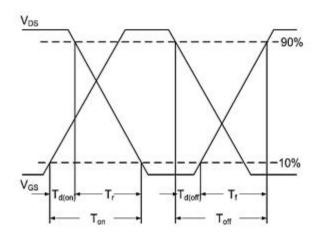
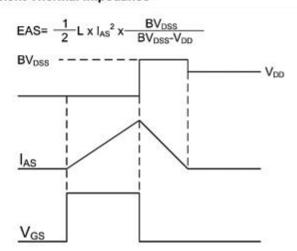
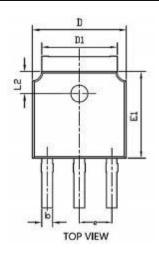
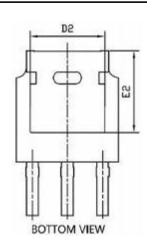
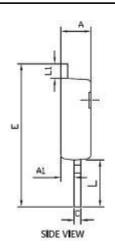


Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-TO-251S-3L

	Common				
Symbol	mm				
	Mim	Nom	Max		
Α	2.2	2.3	2.4		
A1	0.9	1.0	1.1		
b	0.66	0.76	0.86		
С	0.46	0.52	0.58		
D	6.50	6.6	6.7		
D1	5.15	5.3	5.45		
D2	4.6	4.8	4.95		
Е	10.4		11.5		
E1	6.0	6.1	6.2		
E2	5.400REF				
е	2.286BSC				
L	3.5	4.0	4.3		
L1	0.9		1.27		
L2	1.4		1.9		

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	TO-251S-3L		4000

5