

40V N+N-Channel Enhancement Mode MOSFET

Description

The SX8H04DF uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 40V I_{D} = 10.8A$

 $R_{DS(ON)} < 20m\Omega$ @ $V_{GS}=10V$

Application

Wireless charging

Boost driver

Brushless motor

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	40	V	
VGS	Gate-Source Voltage	±20	V	
lo@Ta=25°C	Continuous Drain Current ¹	10.8	А	
lo@Ta=70°C	Continuous Drain Current ¹	7.6	А	
IDM	Pulsed Drain Current ²	36	Α	
EAS	Single Pulse Avalanche Energy ³	31	mJ	
IAS	Avalanche Current	25	Α	
P o@T a=25°C	Total Power Dissipation ⁴	1.9	W	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	${\mathbb C}$	
Reja	Thermal Resistance Junction-ambient¹(t≤10s)	85	°C/W	
Reuc	Thermal Resistance Junction-ambient ¹	8	°C/W	

40V N+N-Channel Enhancement Mode MOSFET

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.034		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , ID=5A		16	20		
KD3(ON)	Static Dialii-Source Off-Nesistance-	V _{GS} =4.5V , I _D =4A		20	36	mΩ	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , lp =250uA	1.2	1.6	2.5	V	
$\triangle V$ GS(th)	$V_{GS(th)}$ Temperature Coefficient	VGS-VDS , ID -230UA		-4.56		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	uA	
1033	Diain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =55℃		5	5		
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=5V , ID=5A		14		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.6		Ω	
Qg	Total Gate Charge (4.5V)	V _{DS} =20V , V _{GS} =4.5V , I _D =5A		5.5		nC	
Qgs	Gate-Source Charge			1.25			
Q_{gd}	Gate-Drain Charge			2.5			
Td(on)	Turn-On Delay Time			8.9			
Tr	Rise Time	V _{DD} =20V , V _{GS} =10V , R _G =3.3Ω		2.2		ns	
Td(off)	Turn-Off Delay Time	lo=1A		41			
Tf	Fall Time			2.7			
Ciss	Input Capacitance			593			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		76		pF	
Crss	Reverse Transfer Capacitance			56			
ls	Continuous Source Current ^{1,5}	V V 0V 5			6.1	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			23	Α	
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,TJ=25℃			1.2	V	

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The power dissipation is limited by 150 $^{\circ}\mathrm{C}$ junction temperature
- $4\sqrt{100}$ The data is theoretically the same as $10\sqrt{100}$ and $10\sqrt{100}$, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

C l	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0.400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads

Package Marking and Ordering Information

· aonago marning an	a Cracing intermatic	<u> </u>	
Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000