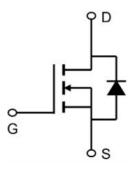


Description

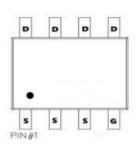
The SX15N06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 60V I_D =15A


 $R_{DS(ON)} < 18m\Omega @ V_{GS}=10V$

Application


Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	60	V	
VGS	Gate-Source Voltage ±20		V	
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹ 15		А	
b@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹	10	А	
IDM	Pulsed Drain Current ² 45		А	
EAS	Single Pulse Avalanche Energy ³	139	mJ	
P o@T c=25℃	Total Power Dissipation ⁴	1.5	W	
TSTG	Storage Temperature Range	-55 to 150	℃	
TJ	Operating Junction Temperature Range	-55 to 150	℃	
R₀JA	Thermal Resistance Junction-Ambient ¹	85	°C/W	
R₀JC	Thermal Resistance Junction-Case ¹	2.8	°C/W	

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	60	65		V
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , ID=20A		13	18	mΩ
		Vgs=4.5V , ID=10A		18	25	
VGS(th)	Gate Threshold Voltage	\/aa=\/aa a =250uA	1.2	1.5	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =250uA		-5.68		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	uA
1000	Brain-Gource Leakage Guiterit	VDS-40V , VGS-0V , 13-20 C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=5V , Ip=15A		45		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		Ω
Qg	Total Gate Charge (4.5V)	V _{DS} =48V , V _{GS} =4.5V , I _D =15A		19.3		
Qgs	Gate-Source Charge			7.1		nC
Qgd	Gate-Drain Charge			7.6		
Td(on)	Turn-On Delay Time			7.2		
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =3.3Ω,		50		ns
Td(off)	Turn-Off Delay Time	b=15A		36.4		
Tf	Fall Time			7.6		
Ciss	Input Capacitance			2423		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		145		pF
Crss	Reverse Transfer Capacitance			97		
l s	Continuous Source Current ^{1,5}	V V 0V 5			35	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			80	Α
VSD	Diode Forward Voltage ²	Vgs=0V,Is=A,TJ=25℃			1	V
trr	Reverse Recovery Time	IF=15A,dI/dt=100A/μs ,Tյ=25℃		16.3		nS
Qrr	Reverse Recovery Charge	- 10A,ul/ul-100A/µ5 ,1J-25 C		11		nC

Note

- 1 . The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2 $\,\,$ The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3 . The power dissipation is limited by $150\,^\circ\!\mathrm{C}$ junction temperature
- 4 . The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation

2

www.sxsemi.com

Typical Characteristics

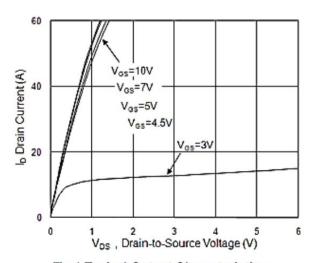


Fig.1 Typical Output Characteristics

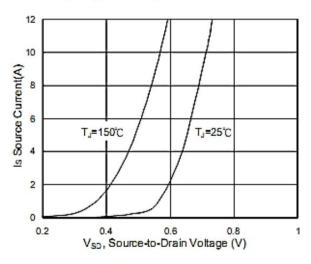


Fig.3 Forward Characteristics of Reverse

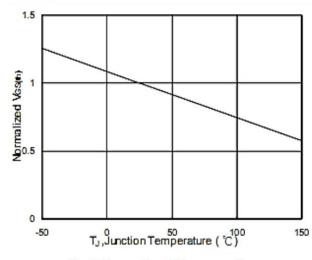


Fig.5 Normalized V_{GS(th)} v.s T_J

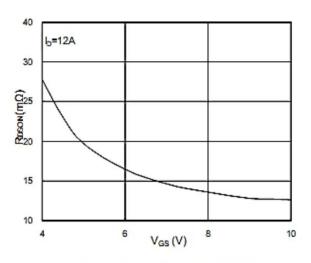


Fig.2 On-Resistance v.s Gate-Source

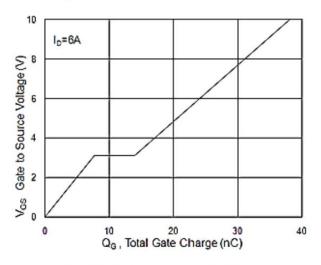


Fig.4 Gate-Charge Characteristics

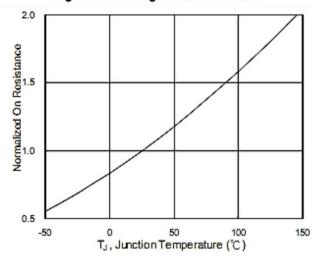
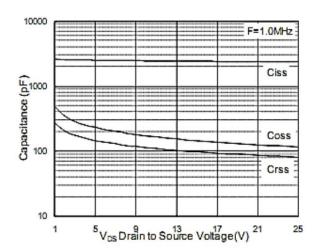



Fig.6 Normalized Roson v.s TJ

Typical Characteristics

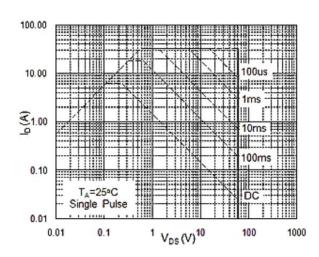


Fig.7 Capacitance

Fig.8 Safe Operating Area

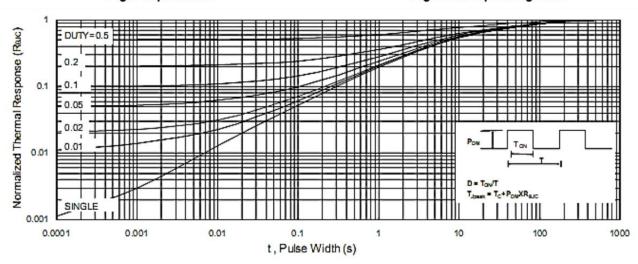


Fig.9 Normalized Maximum Transient Thermal Impedance

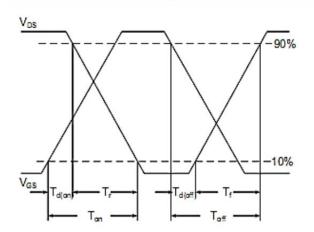
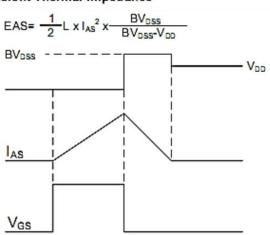
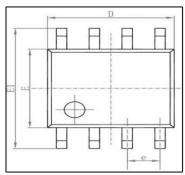
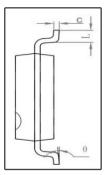
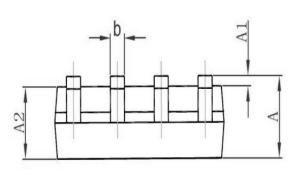
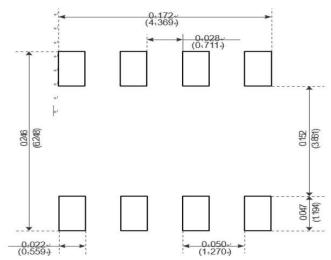


Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Switching Waveform


Package Mechanical Data-SOP-8L

C L = 1	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000

5