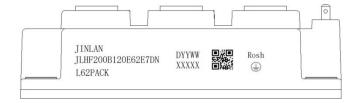
RoHS

JLHF200B120E62E7DN

L62 PACK module with Gen7 IGBT and Emitter Controlled 7 diode

Features


- 1200V Trench Stop IGBTs
- T_{vj op}=150°C
- V_{CEsat} with positive temperature coefficient
- 10µs short circuit capability
- For higher switching frequencies up to 20kHz
- Standard housing
- 4 kV AC 1 min insulation
- Low inductance case
- Insulated copper baseplate using DBC technology
- High creepage and clearance distances

Typical Applications

- · Matrix Inverter
- · Bidirectional switch

L62 Pack

JINLAN = Company Name


JLHF200B120E62E7DN = Specific Device Code

YYWW = Year and Work Week Code

XXXXX = Serial Number

QR code = Custom Assembly Information

Description

Package Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS,f=50Hz,t=60s	4.0	kV
Internal isolation		basic insulation(class 1,IEC 61140)	Improved Al ₂ O ₃	
Creepage distance	d _{creep}	terminal to heatsink	29.0	mm
Creepage distance	d _{creep}	terminal to terminal	23.0	mm
Clearance	d _{clear}	terminal to heatsink	23.0	mm
Clearance	d _{clear}	terminal to terminal	11.0	mm
Comparative tracking index (electrical)	CTI		>500	
RTI Elec.	RTI	housing	140	$^{\circ}$ C

Package Characteristic values

					Values		
Parameter	Symbol	Note or test cond	Min.	Тур.	Max.	Unit	
Stray Inductance	L _{CE}				20		nH
Module Lead Resistance, Terminal to Chip	R _{cc'+EE'}	T _c =25°C, per switch			0.5		mΩ
Storage Temperature Range	T _{STG}			-40		125	$^{\circ}$
М	Mounting torque for module mounting	-Mounting according to valid application note	M5, Screw	3.0		6.0	Nm
М	Terminal connection torque	-Mounting according to valid application note	M6, Screw	2.5		5.0	Nm
Weight	G				340		g

IGBT

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Description	Note or test condition		Value	Unit
V_{CES}	Collector-Emitter Voltage	T _{vj} = 25 °C		1200	V
I _{CDC}	Continuous DC collector current	T _{vj max} = 175 °C	T _C = 90 °C	200	Α
I _{CRM}	Repetitive peak collector current	t _p limited by T _{vjop}		400	Α
V_{GES}	Gate-emitter peak voltage			±30	٧

Characteristics (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditio	n	Min	Тур	Max	Unit
			T _{vj} = 25 °C		1.45	1.95	
$V_{\text{CE(sat)}}$	/ _{CE(sat)} Collector-Emitter Saturation Voltage	age I _C =200A, V _{GE} = 15 V	T _{vj} = 150 °C		1.70		V
			T _{vj} = 175 °C		1.75		
V _{GE(TH)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 5$ mA,	T _{vj} = 25°C	5.0	5.8	6.5	V
Ices	Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} =1200V	, T _{vj} = 25°C			100	uA
I _{GES}	Gate-Emitter Leakage Current	V_{GE} = ± 30 V, V_{CE} = 0 V	', T _{vj} = 25°C			±100	nA
R _{Gint}	Internal Gate Resistance	T _{vj} = 25 °C	C		1.34		Ω
Cies	Input Capacitance				34		nF
Coes	Out Capacitance	f = 100 kHz, T _{vj} = 25 °C, V ₀	_{CE} = 25 V, V _{GE} = 0		0.8		nF
C _{res}	Reverse Transfer Capacitance	V			0.12		nF
Q_{G}	Gate Charge	V _{GE} = ±15 V, V _{CC}	= 960 V		1.10		μC
		I_C = 200A, V_{CC} = 600 V, V_{GE} = 15 /-5V, R_G = 1.0 Ω	T _{vj} = 25 °C		0.203		μS
$t_{d(on)}$	Turn-On Delay Time		T _{vj} = 150 °C		0.230		
			T _{vj} = 175 °C		0.233		
		Fime $I_{C} = 200A, V_{CC} = 600 \text{ V}, V_{GE} = 15 \text{ /-5V}, R_{G} = 1.0 \Omega$	T _{vj} = 25 °C		0.037		
$t_{\rm r}$	t _r Rise Time		T _{vj} = 150 °C		0.044		μS
			T _{vj} = 175 °C		0.045		
		1 - 2004 \/ - 600 \/	T _{vj} = 25 °C		0.412		
$t_{d(off)}$	Turn−off Delay Time	$I_C = 200A$, $V_{CC} = 600 V$, $V_{GE} = 15 /-5V$, $R_{Goff} = 1.0 \Omega$	T _{vj} = 150 °C		0.470		μS
			T _{vj} = 175 °C		0.480		
		I _C = 200A, V _{CC} = 600 V,	T _{vj} = 25 °C		0.050		
\mathbf{t}_{f}	Fall Time	$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$	T _{vj} = 150 °C		0.112		μS
		VGE = 137-3V, NG = 1.0 12	T _{vj} = 175 °C		0.114		
	E _{on} Turn-On Switching Loss per Pulse	I _C =200A, V _{CC} = 600 V,	T _{vj} = 25 °C		6.22		
Eon		$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$	T _{vj} = 150 °C		12.40		mJ
		(T _{vj max} = 175 °C)	T _{vj} = 175 °C		13.80		
		L = 200A V = 600 V	T _v j = 25 °C		27.03		
E_{off}	Turn Off Switching Loss per Pulse	$I_C = 200A$, $V_{CC} = 600 V$, $V_{GE} = 15 /-5V$, $R_G = 1.0 \Omega$	T _{vj} = 150 °C		36.00		mJ
∟off	. a.n. on omorning 2000 por ruise	(T _{vj max} = 175 °C)	T _{vj} = 175 °C		37.20		

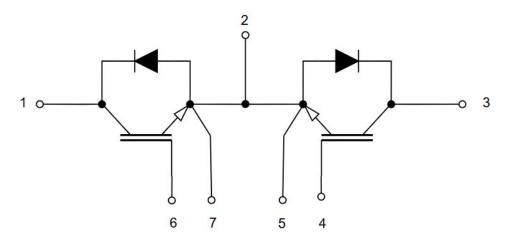
Isc	SC Data	V _{GE} ≤ 15 V, V _{CC} = 800 V, V _{CEmax} =V _{CES} -L _{sCE} .di/dt	$V_{GE} \le 15 \text{ V}, V_{CC} = 800 \text{ V},$	$t_P \le 10 \ \mu s$, $T_{vj} = 150 \ ^{\circ}C$ $t_P \le 10 \ \mu s$,		1000		A
			T _{vj} =175 °C		941			
R _{thJC}	Thermal resistance	Junction-to-Case (per IGBT)			0.157	0.176	K/W	
T _{vj op}		Temperature under switching conditions				175 ¹⁾	$^{\circ}$	

 $^{^{1)}}T_{vj \, op} > 175\,^{\circ}\text{C}$ is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

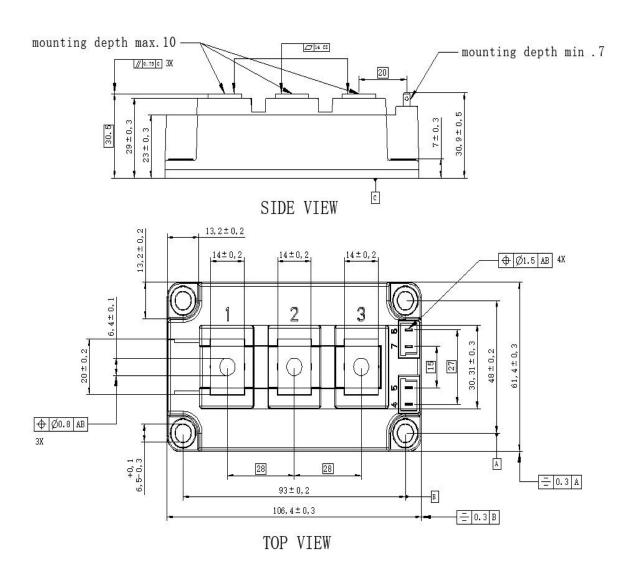
Diode

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Description	Note or test condition	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	T _{vj} = 25 °C	1200	V
I _F	Continuous DC forward current		200	Α
I _{FRM}	Repetitive peak forward current	t _P = 1 ms	400	Α


$\textbf{Characteristics} \quad (\texttt{Tc=25}\, ^{\circlearrowright} \texttt{unless otherwise noted})$

Comple ed	Downwater	Test Condition			Value		11-24	
Symbol	Parameter			Min	Тур	Max	Unit	
			T _v j = 25 °C		2.10	2.80		
V_{F}	Diode Forward Voltage	I _F = 200A, V _{GE} = 0 V	T _{vj} = 150 °C		2.00		V	
			T _{vj} = 175 °C		1.95			
		I _C = 200A, V _{CC} = 600 V,	T _v j = 25 °C		4.1			
Q_{rr}	Q _{rr} Recovered Charge	' ' '	T _{vj} = 150 °C		13.5		μC	
			T _{vj} = 175 °C		16.5			
		In = 2004 Ven = 600 V Ven =	I _C = 200A, V _{CC} = 600 V, V _{GE} =	T _v j = 25 °C		140		
I _{RRM}	Peak Reverse Recovery Current		T _{vj} = 150 °C		176		A	
			T _{vj} = 175 °C		185			
		I _C = 200A, V _{CC} = 600 V,	T _{vj} = 25 °C		4.4			
E _{rec}	E _{rec} Reverse recovery energy		, , , ,	T _{vj} = 150 °C		12.0		mJ
	(T _{vj max} = 175 °C)	T _{vj} = 175 °C		14				
R_{thJC}	Thermal resistance, junction to case	per diode			0.154	0.173	K/V	
T _{vj op}	Temperature under switching conditions			-40	-	175 ²⁾	°C	


²⁾T_{vj op} > 175 °C is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

CIRCUIT DIAGRAM

PACKAGE DIMENSION

Jinlan Power Semiconductor(Wuxi).co.,LTD

REVISION HISTORY

Document version	Date of release	Description of changes
Rev.00	2024-05-31	Preliminary Data

- Any and all Jinlan power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Jinlan Power Semiconductor representative nearest you before using any Jinlan power products described or contained herein in such applications.
- Jinlan Power Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Jinlan power modules described or contained herein.
- Specifications of any and all Jinlan power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Jinlan Power Semiconductor (Wuxi).co.,LTD. strives to supply high-quality high-reliability products. However,any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Jinlan power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Jinlan Power Semiconductor (Wuxi).co.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Jinlan Power Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Jinlan power product that you intend to use.
- This catalog provides information as of May.2024. specifications and information herein are subject to change without notice.