

低成本线性输出霍尔芯片

1. 产品特性

- 4.5-5.5V 输入电压范围
- 电流源输出形式
- 低噪声输出,且无需外部滤波
- -40°C-125°C工作温度范围
- 线性度好
- 抗机械应力设计
- TO-92S、SOT23-3封装可用

2. 典型应用

- 电机控制
- 位置传感
- 电流检测
- 磁条码读取
- 含铁金属探测
- 称重和液位检测

3. 产品描述

SC4001 是一款小型、经济型线性霍尔传感器芯片,输出电压与电源电压成比例变化,并随其感应的磁场强度成比例变化。

SC4001 的零点输出电压(无磁场)默认为电源电压的 一半,灵敏度典型值为 1.4mV/Gs。

芯片的典型工作电压为 5.0V,极限耐压可达 30V,工作温度范围支持-40--125°C,适用于商业、消费及工业领域。

SC4001 提供 TO-92S 和 SOT23-3 两种封装形式,亚光镀锡,采用无卤绿料,满足环保要求。

Not to scale

图1. TO-92S(左) & SOT23-3 (右)封装示意图

目录

1. 产品特性 1	9. 工作参数6
2. 典型应用1	10. 功能框图7
3. 产品描述1	11. 功能描述7
4. 引脚定义 3	12. 典型应用8
5. 订购信息 4	<i>13. 封装信息 "</i> SOT23-3(SE)"9
6. 极限参数5	<i>14. 封装信息 "</i> TO-92S(UA)"10
7. 静电保护 5	15. 历史版本11
8 执特性 5	

4. 引脚定义

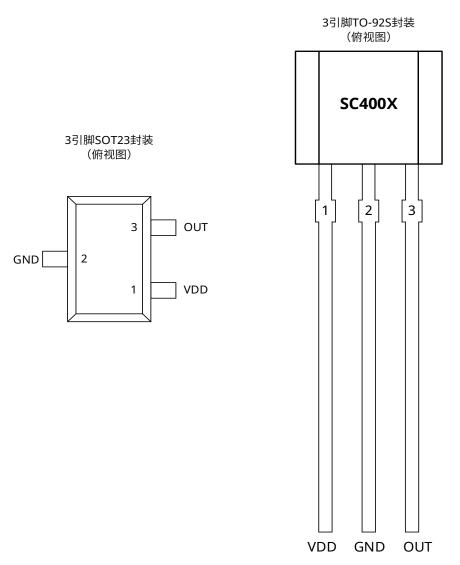
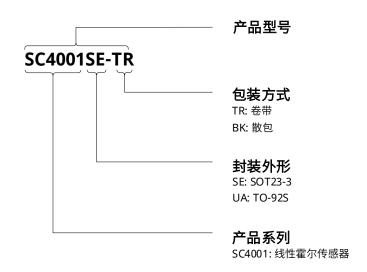


图 2. SOT23-3 封装俯视图(左) & TO-92S 封装俯视图(右)

47 IIn	SOT23-3 & TO-92S	
名称	序号	描述
VDD	1	4.5V~5.5 V 电源供电
GND	2	地
OUT	3	输出端


5. 订购信息

产品名称	灵敏度(mV/Gs) ⁽¹⁾	工作温度(°C)	封装形式	包装形式	数量
SC4001UA-BK ⁽²⁾	1.4	-40-125	TO-92S	散包	1000 颗/袋
SC4001SE-TR	1.4	-40-125	SOT23-3	卷盘	3000 颗/盘

备注:

- (1) 此灵敏度数据均为5V 应用条件下
- (2) TR: Tape & Reel,卷盘包装; BK: Bulk, 散装

订购信息格式说明

6. 极限参数

符号	参数	测试条件	最小值	最大值	单位
V _{cc}	电源端耐压	$B = 0mT, T_A = 25^{\circ}C$	-0.5	10.0	٧
V _{OUT}	输出端耐压	-	-0.3	10.0	٧
I _{CC}	电源电流	V _{CC} = 5V, B = 0mT	-	15	mA
I _{OUT}	输出电流	-	-	2	mA
T _A	工作温度范围	-	-40	125	°C
Tj	结温范围	-	-50	165	°C
T_{STG}	储存温度范围	-	-65	175	°C

备注:

以上列出的应力可能会对器件造成永久性的损害,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	最小值	最大值	单位
V	人体失效模型,参考 ANSI/ESDA/JEDEC JS-001 标准(HBM)	-4	+4	KV
V_{ESD}	充放电失效模型,参考 ANSI/ESDA/JEDEC JS-002 标准(CDM)	-750	+750	V

8. 热特性

符号	参数	测试条件		单位
D	TO-92S 封装形式热阻	单层 PCB,JEDEC 2s2p 和 1s0p 分别在 JESD 51-7 和 JESD 51-3 中定义		°C/W
$R_{ heta JA}$	SOT23-3L 封装形式热阻			-C/VV

备注:

(1)最大工作电压必须满足功耗和结温的要求,参照热特性

9. 工作参数

(工作电压范围 4.5V to 5.5V, 环境温度-40°C to 125°C ,另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{cc}	工作电压	T_{J} < $T_{J(Max)}$	4.5	5.0	5.5	٧
I _{CC}	工作电流	VCC=5.0V, T _A =25°C	-	6.5	10.0	mA
RL	输出负载电阻	OUT to VCC	4	-	-	kΩ
V _{OUT(H)}	****	T _A =25°C, B=1000Gs	4.0	4.2	-	٧
V _{OUT(L)}	输出电压范围	T _A =25°C, B=-1000Gs	0	0.8	1.0	٧
V _{OUT(Q)}	静态输出电压	V _{CC} =5V, B=0Gs, T _A =25°C	2.375	2.5	2.625	٧
S	灵敏度	VCC=5V,T _A =25°C	1.0	1.4	1.9	mV/Gs
Lin	线性度	-	-5	-	+5	%
△Sens	灵敏度温漂	T _A = -40°C to 105 °C	-20	-	+20	%
T_{RESP}	阶跃响应时间 延迟输出信号达到 90%		-	1	-	μS

10. 功能框图

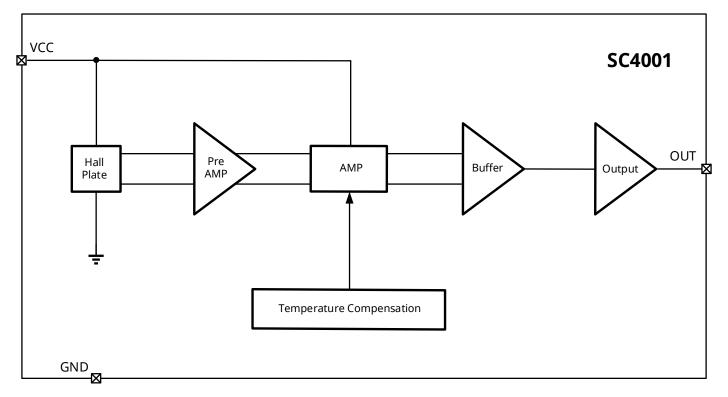


图 3. 功能框图概览

11. 功能描述

磁场定义: TO-92S 封装,磁场 S 极正对芯片丝印面定义为正磁场; SOT23-3 封装,磁场 S 极正对芯片丝印面定义为负磁场。

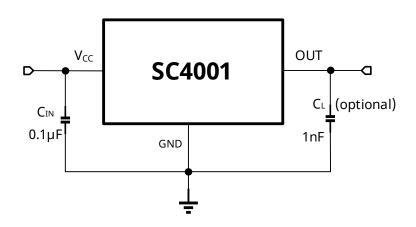
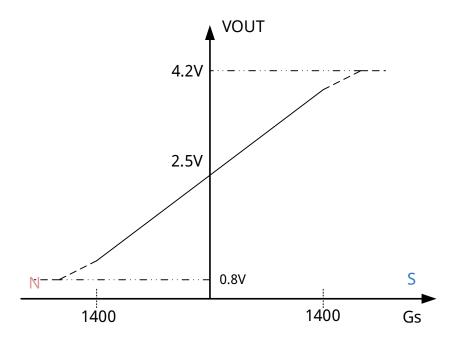
静态输出电压(Vоит(Q)): "静态输出电压"指无磁场时芯片的输出电压。

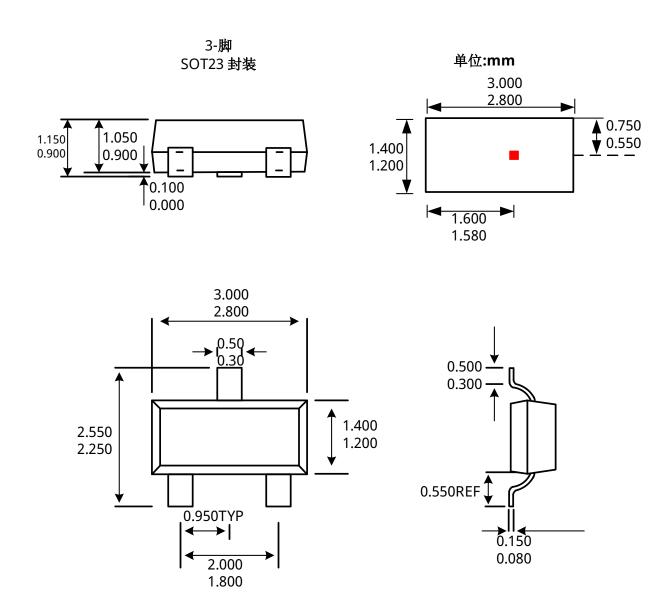
灵敏度(S)

$$Sens = [VOUT(B1) - VOUT(B2)]/(B1 - B2)$$

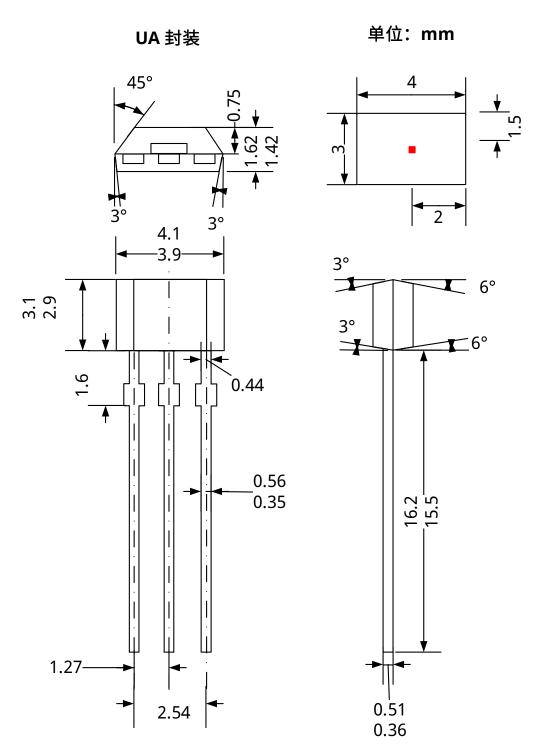
当垂直于芯片丝印侧的 S 极磁场接近时,输出电压成比例增加,直到达到电源电压;相反,当垂直于芯片丝印侧的 N 极磁场接近时,输出电压成比例降低,直到达到地电平。灵敏度定义为输出电压变化和磁场变化的具体数值,一般以 mV/Gs 或 mV/mT 为单位。

12. 典型应用


图 4. 典型应用线路图

芯片的静态(零磁场强度)输出电压 VQ 通常是电源工作电压范围内电源电压的一半。当垂直于芯片丝印表面的 S 极磁场增大时,芯片的输出电压成比例增大。相反,当 N 电极作用于芯片的丝印表面时,输出电压以相同的比例同步下降。


13. 封装信息 "SOT23-3(SE)"

注: 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。 2.高度不包括模具浇口溢料。 如果未指定公差,则尺寸为公称尺寸。

14. 封装信息 "TO-92S(UA)"

注:

- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
- 2.高度不包括模具浇口溢料。

如果未指定公差,则尺寸为公称尺寸。

15. 历史版本

版本	日期	描述
Rev.E0.1	2017-11-14	初始规格书
Rev.E0.5	2018-09-11	完善产品应用
Rev.E0.9	2019-05-04	最终规格书版本号
Rev.A1.0	2020-11-19	统一格式发布
Rev.A1.1	2025-01-27	格式修改