RMP6N60LD RMP6N60IP RMP6N60TI RMP6N60T2 #### **N-CHANNEL ENHANCEMENT MODE MOSFET** ### General Description RMP6N60 is an N-channel enhancement mode MOSFET, which uses the self-aligned planar process and improved terminal technology, reducing the conduction loss, enhancing the avalanche energy. ### MAIN CHARACTERISTICS | $V_{ m DSS}$ | 600 | V | |---------------------|-----|----| | I_D | 6.0 | A | | R _{DS(ON)} | 1.5 | Ω | | Crss | 11 | pF | #### **FEATURES** - Low Crss - Low gate charge - Fast switching - Improved ESD capability - Improved dv/dt capability - 100% avalanche energy test #### **APPLICATIONS** - High efficiency swith mode power supplies - · Electronic lamp ballasts - UPS #### **Package Marking And Ordering Information** | Device | Device Package | Marking | |-----------|----------------|---------| | RMP6N60IP | TO-251 | 6N60 | | RMP6N60LD | TO-252 | 6N60 | | RMP6N60TI | TO-220F | 6N60 | | RMP6N60T2 | TO-220 | 6N60 | # ABSOLUTE MAXIMUM RATINGS (Te=25°C) | Parameter | Symbol | | Value | Unit | | |---|---|------------------------------------|---------------------|-------------------------|----| | Drain-Source Voltage | | $ m V_{DSS}$ | | V | | | Continues Drain Current | I_D | Tc=25°C
Tc=100°C | 6*
2.8* | A | | | Plused Drain Current (note 1) | | I_{DM} | 24 | A | | | Gate-to-Source Voltage | | V_{GS} | ±30 | V | | | Single Pulsed Avalanche Energy (note 2) | Eas | | E _{AS} 218 | | mJ | | Avalanche Current (note 1) | I_{AR} | | I _{AR} 4.0 | | | | Repetitive Avalanche Energy (note 1) | E _{AR} | | 10 | mJ | | | Peak Diode Recovery (note 3) | | dv/dt | 4.5 | V/ns | | | Power Dissipation | P _D
Tc=25℃ | TO-251/TO-252
TO-220
TO-220F | 51
100
33 | W | | | Power Dissipation Derating Factor | P _{D(DF)}
Above 25 °C TO-220
TO-220F | | 0.39
0.8
0.26 | W/°C | | | Operating and Storage Temperature Range | T _J , T _{STG} | | 150, -55~+150 | $^{\circ}\! \mathbb{C}$ | | | Maximum Temperature for Soldering | T_{L} | | 300 | $^{\circ}\! \mathbb{C}$ | | # THERMAL CHARACTERISTICS | Parameter | Symbol | | Max | Unit | | |---|----------|---------------|------|------|--| | | | TO-251/TO-252 | 2.5 | | | | Thermal Resistance, Junction to Case | Rth(j-c) | TO-220 | 1.25 | °C/W | | | | | TO-220F | 3.79 | | | | | | TO-251/TO-252 | 83 | | | | Thermal Resistance, Junction to Ambient | Rth(j-A) | TO-220 | 62.5 | °C/W | | | | | TO-220F | 62.5 | | | ^{*} Drain current limited by maximum junction temperature # **ELECTRICAL CHARACTERISTICS** | Off-Characteristics | | | | | | | |--|--------------------------------------|---|-----|------|------|------| | Parameter | Symbol | Tests Conditions | Min | Туре | Max | Unit | | Drain-Source Breakdown Voltage | BV _{DSS} | $I_D=250\mu A, V_{GS}=0V$ | 600 | - | - | V | | Breakdown Voltage Temperature
Coefficient | $\triangle BV_{DSS}/\triangle$ T_J | I_D =250 μ A, referenced to 25 $^{\circ}$ C | - | 0.7 | - | V/°C | | Zero Gate Voltage Drain Current | I_{DSS} | V_{DS} =600V, V_{GS} =0V,
T_{C} =25°C | - | - | 1 | μА | | _ | | V _{DS} =480V, T _C =125°C | - | - | 10 | μΛ | | Gate-body leakage current, forward | I _{GSSF} | V _{DS} =0V, V _{GS} =30V | - | - | 100 | nA | | Gate-body leakage current, reverse | I_{GSSR} | $V_{DS}=0V, V_{GS}=-30V$ | - | - | -100 | nA | | On-Characteristics | | | | | | | |-----------------------------------|---------------------|---|-----|------|------|------| | Parameter | Symbol | Tests Conditions | Min | Туре | Max | Unit | | Gate Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ | 2.0 | - | 4.0 | V | | Static Drain-Source On-Resistance | R _{DS(ON)} | V _{GS} =10V, I _D =3.0A | - | 1.5 | 1.65 | Ω | | Forward Transconductance | $g_{ m fs}$ | V _{DS} = 40V, I _D =3.0A (note4) | - | 5 | - | S | | Dynamic Characteristics | | | | | | | |------------------------------|------------------|---|-----|------|------|------| | Parameter | Symbol | Tests Conditions | Min | Туре | Max | Unit | | Input capacitance | C _{iss} | | - | 800 | 1280 | pF | | Output capacitance | Coss | V _{DS} =25V, V _{GS} =0V, f=1.0MHZ | - | 75 | 145 | pF | | Reverse transfer capacitance | Crss | | - | 11 | 18 | pF | | Switching Characteristics | | | | | | | |---------------------------|----------------------|--|-----|------|-----|------| | Parameter | Symbol | Tests Conditions | Min | Туре | Max | Unit | | Turn-On delay time | t _d (on) | V_{DD} =300V, I_{D} =6A, R_{G} =25 Ω (note 4, 5) | - | 25 | 60 | ns | | Turn-On rise time | t _r | | ı | 58 | 125 | ns | | Turn-Off delay time | t _d (off) | | - | 75 | 160 | ns | | Tum-Off Fall time | t_{f} | | - | 58 | 125 | ns | | Total Gate Charge | Qg | | ı | 30 | 35 | nC | | Gate-Source charge | Qgs | V _{DS} =480V, I _D =6A, V _{GS} =10V
(note 4, 5) | - | 3.8 | - | nC | | Gate-Drain charge | Qgd | , , , | - | 14 | - | nC | | Drain-Source Diode Characteristics and Maximum Ratings | | | | | | | | |--|-------------------|---|-----|------|-----|------|--| | Parameter | Symbol | Tests Conditions | Min | Туре | Max | Unit | | | Maximum Continuous Drain-Source
Diode Forward Current | | Is | - | - | 6 | A | | | Maximum Pulsed Drain-Source Diode
Forward Current | I_{SM} | | - | - | 24 | A | | | Drain-Source Diode Forward Voltage | V_{SD} | V _{GS} =0V, I _S =6A | - | - | 1.4 | V | | | Reverse recovery time | t _{rr} | V _{GS} =0V, I _S =6A | | 340 | - | ns | | | Reverse recovery charge | Qrr | dI _F /dt=100A/μs (note 4) | - | 2.7 | - | μС | | #### Notes: - 1: Pulse width limited by maximum junction temperature - 2: I=25mH, I_AS=4A, V_DD=50V, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C - 3: $I_{SD} \leqslant 6A$, $di/dt \leqslant 300A/\mu s$, $V_{DD} \leqslant BV_{DSS}$, Starting $T_{J} = 25^{\circ}C$ - 4: Pulse Test: Pulse Width ≤300 μ s, Duty Cycle≤2% - 5: Essentially independent of operating temperature ### RATING AND CHARACTERISTICS CURVES (RMP6N60LD(IP)(TI)(T2)) 10 *Notes: 1. V_{DS} = 20V 2. 250µs Pulse Test ID, Drain Current[A] 150°C 25°C -55°C 0.1 6 4 8 V_{GS}, Gate-Source Voltage[V] Fig. 1 On-State Characteristics Fig. 3 Breakdown Voltage Variation vs Temperature Fig. 4 On-Resistance Variation vs Temperature V_{DS} = 120V $V_{DS} = 300V$ $V_{DS} = 480V$ 10 8 Fig. 5 Capacitance Characteristics Fig. 6 Gate Charge Characteristics # RATING AND CHARACTERISTICS CURVES (RMP6N60LD(IP)(TI)(T2)) Fig. 7 Maximum Safe Operating Area Fig. 8 Maximum Drain Current vs Case Temperature Fig. 9 Transient Thermal Response Curve (TO-251/TO-252) Fig. 10 Transient Thermal Response Curve(TO-220/TO-262) Fig. 11 Transient Thermal Response Curve(TO-220F) # TEST CIRCUITS AND WAVEFORMS Fig.12 Resistive Switching Test Circuit & Waveforms Fig.13 Gate Charge Test Circuit & Waveform Fig.14 Unclamped Inductive Switching Test Circuit & Waveforms # PACKAGE MECHANICAL DATA TO-251 | SYMBOL | MILLIMETERS | | CIMPOI | MILLIMETERS | | | |--------|-------------|-----|--------|-------------|-------|--| | 21MDOF | Min | Max | SYMBOL | Min | Max | | | A | 2.0 | 2.6 | E | 8.0 | 9.6 | | | В | 0.9 | 1.3 | L | 14.25 | 17.25 | | | C | 0.4 | 0.6 | b1 | 0.69 | 0.92 | | | D | 5.8 | 6.8 | c1 | 0.4 | 0.6 | | | L1 | 5.7 | 6.2 | D1 | 4.8 | 5.8 | | | A1 | 1.0 | 1.3 | Ъ | 0.64 | 0.89 | | | е | 2. 28 | TYP | | | | | TO-251 #### COMMON DIMENSIONS | CVMDOL | MM | | | | | |--------|-------|-----------|-------|--|--| | SYMBOL | MIN | NOM | MAX | | | | A | 2.20 | 2.30 | 2.38 | | | | A2 | 0.97 | 1.07 | 1.17 | | | | b | 0.72 | 0, 78 | 0.85 | | | | b1 | 0.71 | 0.76 | 0.81 | | | | b3 | 5. 23 | 5. 33 | 5. 46 | | | | С | 0.47 | 0.53 | 0.58 | | | | c1 | 0.46 | 0.51 | 0.56 | | | | D | 6.00 | 6.10 | 6. 20 | | | | D1 | | 5. 30REF | | | | | E | 6.50 | 6.60 | 6.70 | | | | E1 | 4.70 | 4.83 | 4. 92 | | | | е | | 2. 286BSC | | | | | Н | 16.10 | 16.40 | 16.60 | | | | L1 | 9. 20 | 9.40 | 9.60 | | | | L3 | 0.90 | 1.02 | 1. 25 | | | | L5 | 1.70 | 1.80 | 1.90 | | | | θ 1 | 5° | 7° | 9° | | | | θ2 | 5° | 7° | 9° | | | TO-252 | MILLIN | | METERS | arram or | MILLIMETERS | | | |--------|-----|--------|----------|-------------|------|--| | SYMBOL | Min | Max | SYMBOL | Min | Max | | | A | 2.1 | 2.4 | е | 2. 29 | BSC | | | A1 | 550 | 0.13 | Н | 9.6 | 11.1 | | | b | 0.6 | 0.9 | L3 | 0.8 | 1.4 | | | b2 | 0.8 | 1.2 | L4 | 0.6 | 1.1 | | | b3 | 5.2 | 5.5 | D | 5.8 | 6.3 | | | С | 0.4 | 0.6 | E | 6.3 | 6.7 | | TO-220F | SYMBOL | MILLIMETERS | | SYMBOL | MILLIMETERS | | |--------|-------------|-------|--------|-------------|------| | | Min | Max | 21WDOF | Min | Max | | A | 9.96 | 10.36 | K | 2.34 | 2.74 | | J | 4.5 | 4.9 | 0 | 0.4 | 0.6 | | M | 28 | 29. 6 | G | 0.7 | 0.9 | | E | 15. 4 | 15. 6 | D | 2.9 | 3.3 | | L | 15.5 | 16.1 | С | 3. 25 | 3.5 | | N | 2.2 | 2.9 | I | 2.54 TYP | | | F | | 1.4 | | | | | SYMBOL | MILLIMETERS | | CAIMOI | MILLIMETERS | | |--------|-------------|------|--------|-------------|------| | | Min | Max | SYMBOL | Min | Max | | A | 4.2 | 4.8 | С | 0.4 | 0.6 | | D1 | 8.9 | 9.4 | b | 0.7 | 0.9 | | E | 9.7 | 10.3 | A1 | 1.2 | 1.4 | | H1 | 6.3 | 6.9 | Q | 2.7 | 2. 9 | | b2 | 1.27 | 1.43 | A2 | 2.3 | 2.5 | | ØP. | 3.6 | 3.9 | е | 2.54 TYP | | | D | 15.5 | 15.7 | | | | #### **DISCLAIMER NOTICE** Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit. Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures. # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ### Rectron: RMP6N60T2 RMP6N60IP RMP6N60TI RMP6N60LD-T