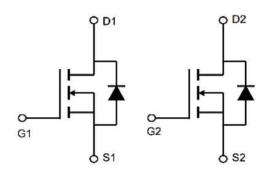


Description

The SX50H06NF uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 60V I_D =50A


 $R_{DS(ON)} < 16m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	60	V	
VGS	Gate-Source Voltage	±20	V	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	50	А	
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	25	Α	
IDM	Pulsed Drain Current ²	150	Α	
EAS	Single Pulse Avalanche Energy³	64	mJ	
Pb@Ta=25°C	Total Power Dissipation ⁴	3.6	W	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	
R₀JC	Thermal Resistance Junction-Case ¹	2.8	°C/W	
ReJA	Thermal Resistance Junction-Ambient ¹	25	°C/W	

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60	65		V	
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =1mA		0.057		V/℃	
DD0(01))	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =12A		11	16	mΩ	
RDS(ON)		V _{GS} =4.5V , I _D =10A		15	20		
VGS(th)	Gate Threshold Voltage		1.2	1.6	2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, I_D =250uA		-5.68		mV/℃	
1000		V _{DS} =48V , V _{GS} =0V , T _J =25℃			1	uA	
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		45		S	
R₀	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		Ω	
Qg	Total Gate Charge (4.5V)	V _{DS} =48V , V _{GS} =4.5V , I _D =15A		19.3		nC	
Q _{gs}	Gate-Source Charge			7.1			
Q_{gd}	Gate-Drain Charge			7.6			
Td(on)	Turn-On Delay Time			7.2		ns	
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω ,		50			
Td(off)	Turn-Off Delay Time	l _D =15A		36.4			
T _f	Fall Time			7.6		1	
C _{iss}	Input Capacitance			2423			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		145		pF	
Crss	Reverse Transfer Capacitance			97			
ls	Continuous Source Current ^{1,5}	V -V -0V Farra 0.00000			35	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			80	Α	
	D: 1 = 11/1 0	V _{GS} =0V , I _S =A , T _J =25℃			1	V	
VSD	Diode Forward Voltage ²	VGS-UV , IS-A , IJ-23 C					
VSD t _{rr}	Diode Forward Voltage ² Reverse Recovery Time	VGS=0V , IS=A , IJ=25 ℃ - IF=15A , dl/dt=100A/µs , T _J =25 ℃		16.3		nS	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 $\,$ FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The power dissipation is limited by 150 $^{\circ}$ C junction temperature 4. The EAS data shows Max. rating . The test condition is VDD=48V,VGS=10V, L=0.1mH IAS=25A, starting Tj=25 $^{\circ}$ C
- 5. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

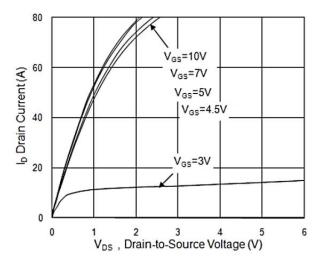


Fig.1 Typical Output Characteristics

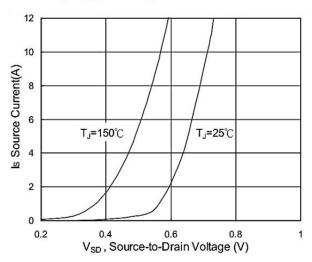


Fig.3 Forward Characteristics of Reverse

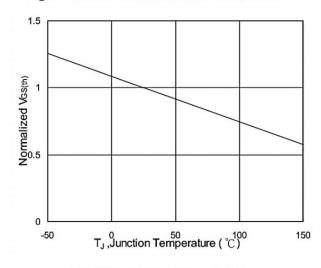


Fig.5 Normalized V_{GS} v.s T_J

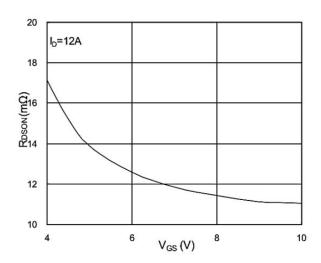


Fig.2 On-Resistance v.s Gate-Source

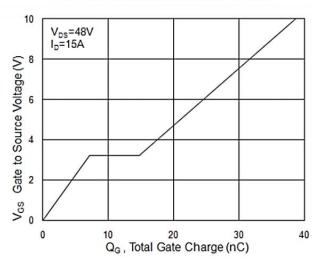


Fig.4 Gate-Charge Characteristics

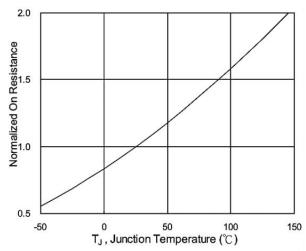
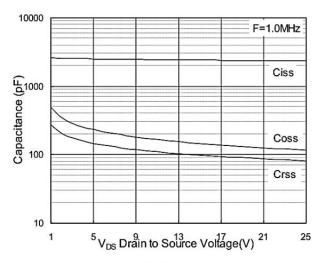



Fig.6 Normalized RDSON v.s TJ

Typical Characteristics

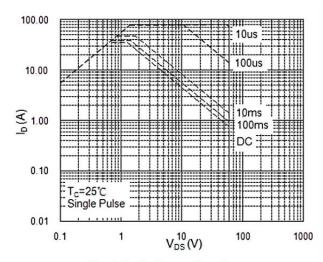


Fig.7 Capacitance

Fig.8 Safe Operating Area

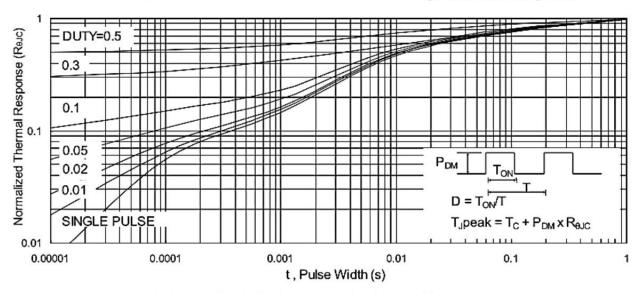


Fig.9 Normalized Maximum Transient Thermal Impedance

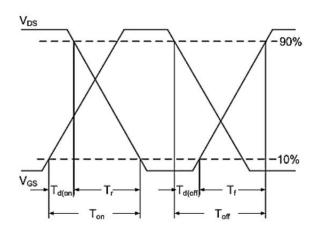


Fig.10 Switching Time Waveform

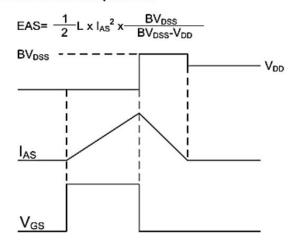
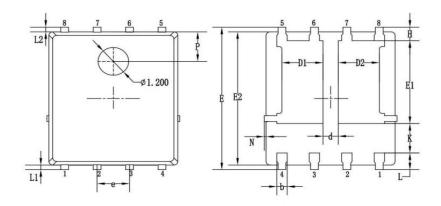
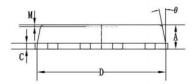




Fig.11 Unclamped Inductive Switching Waveform_

Package Mechanical Data-PDFN5*6-8L Single

Cymbol		Dim in mm	
Symbol	min	tpy	max
Α	0.9	1.05	1.2
b	0.3	0.4	0.5
С	0.2	0.25	0.35
D	4.9	5.05	5.2
D1	3.72	3.82	4.12
Е	5.9	6.1	6.3
E1	2.34	2.44	2.54
E2	5.6	5.75	5.9
E3	0.67	0.77	0.87
е	1.27BSC		
H1	0.37	0.47	0.57
H2	0.33	0.43	0.53
K1	0.69	0.79	0.98
K2	0.65	0.75	0.85
L	0.54	0.74	0.84
L1/L2	0.1	0.2	0.3
θ	8°	10°	12°
M		0.08REF	
N	0		0.15
Р	E E E E E E E E E	1.28REF	li il il

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	PDFN5*6-8L		5000