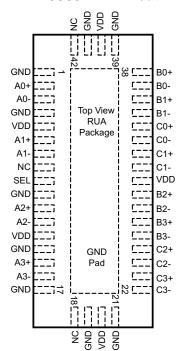


HD3SS3412A

SLAS974-DECEMBER 2017

HD3SS3412A 4-Channel High-Performance Differential Switch


Features

- Compatible With Multiple Interface Standards Operating up to 12 Gbps Including PCI Express Gen III and USB 3.0
- Wide -3-dB Differential BW of Over 8 GHz
- Excellent Dynamic Characteristics (at 4 GHz)
 - Crosstalk = -35 dB
 - Off Isolation = -19 dB
 - Insertion Loss = -1.5 dB
 - Return Loss = -11 dB
- Bidirectional "MUX/De-MUX" Type Differential Switch
- VDD Operating Range 3.3 V ±10%
- Small 3.5-mm × 9.0-mm, 42-Pin WQFN Package
- Common Industry Standard Pinout
- Supports XAUI and SGMII

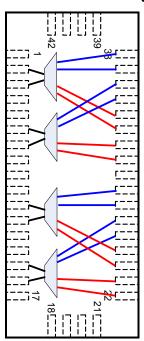
Applications

- Desktop and Notebook PCs
- Server and Storage Area Networks
- PCI Express Backplanes
- Shared I/O Ports

HD3SS3412A Pinout

3 Description

The HD3SS3412A device is a high-speed passive switch capable of switching four differential channels, including applications such as two full PCI Express x1 lanes from one source to one of two target locations in a PC or server application. With its bidirectional capability, the HD3SS3412A also applications that allow connections between one target and two source devices, such as a shared peripheral between two platforms. The HD3SS3412A has a single control line (SEL pin) which can be used to control the signal path between Port A and either Port B or Port C.


The HD3SS3412A is offered in an industry standard 42-pin WQFN package available in a common footprint shared by several other vendors. The device is specified to operate from a single supply voltage of 3.3 V over the full temperature range of 0°C to 70°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
HD3SS3412A	WQFN (42)	9.00 mm × 3.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

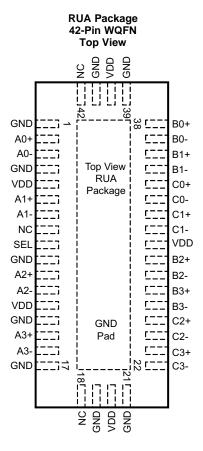
HD3SS3412A Switch Flow Through Routing

SLAS974 – DECEMBER 2017 www.ti.com

Table of Contents

1	Features 1		9.2 Functional Block Diagram	12
2	Applications 1		9.3 Feature Description	13
3	Description 1		9.4 Device Functional Modes	13
4	Revision History2	10	Application and Implementation	14
5	Description (continued)3		10.1 Application Information	14
6	Pin Configuration and Functions		10.2 Typical Application	15
7	Specifications	11	Power Supply Recommendations	17
′	7.1 Absolute Maximum Ratings	12	Layout	17
	7.2 ESD Ratings		12.1 Layout Guidelines	17
	7.3 Recommended Operating Conditions		12.2 Layout Example	17
	7.4 Thermal Information	13	Device and Documentation Support	18
	7.5 Electrical Characteristics		13.1 Receiving Notification of Documentation Update	es 18
	7.6 Dissipation Ratings		13.2 Community Resources	18
	7.7 Typical Characteristics		13.3 Trademarks	18
8	Parameter Measurement Information 10		13.4 Electrostatic Discharge Caution	18
9	Detailed Description 12		13.5 Glossary	18
•	9.1 Overview	14	Mechanical, Packaging, and Orderable Information	18

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
December 2017	*	Initial release.

5 Description (continued)

The HD3SS3412A is a generic 4-CH high-speed MUX/de-MUX type of switch that can be used for routing high-speed signals between two different locations on a circuit board. Although it was designed specifically to address PCI Express Gen III applications, the HD3SS3412A will also support several other high-speed data protocols with a differential amplitude of <1800 mVpp and a common-mode voltage of < 2.0 V, as with USB 3.0 and DisplayPort 1.2. The device's one select input (SEL) pin can easily be controlled by an available GPIO pin within a system or from a microcontroller.

6 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
SWITCH F	PORT A		
A0+	2	I/O	Port A, Channel 0, High-Speed Positive Signal
A0-	3	I/O	Port A, Channel 0, High-Speed Negative Signal
A1+	6	I/O	Port A, Channel 1, High-Speed Positive Signal
A1-	7	I/O	Port A, Channel 1, High-Speed Negative Signal
A2+	11	I/O	Port A, Channel 2, High-Speed Positive Signal
A2-	12	I/O	Port A, Channel 2, High-Speed Negative Signal
A3+	15	I/O	Port A, Channel 3, High-Speed Positive Signal
A3-	16	I/O	Port A, Channel 3, High-Speed Negative Signal
SWITCH F	PORT B		
B0+	38	I/O	Port B, Channel 0, High-Speed Positive Signal
B0-	37	I/O	IPort B, Channel 0, High-Speed Negative Signal

Copyright © 2017, Texas Instruments Incorporated

Pin Functions (continued)

	PIN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
B1+	36	I/O	Port B, Channel 1, High-Speed Positive Signal
B1-	35	I/O	Port B, Channel 1, High-Speed Negative Signal
B2+	29	I/O	Port B, Channel 2, High-Speed Positive Signal
B2-	28	I/O	Port B, Channel 2, High-Speed Negative Signal
B3+	27	I/O	Port B, Channel 3, High-Speed Positive Signal
B3-	26	I/O	Port B, Channel 3, High-Speed Negative Signal

Pin Functions (continued)

	PIN		DECORPTION
NAME	NO.	1/0	DESCRIPTION
SWITCH P	ORT C		
C0+	34	I/O	Port C, Channel 0, High-Speed Positive Signal
C0-	33	I/O	Port C, Channel 0, High-Speed Negative Signal
C1+	32	I/O	Port C, Channel 1, High-Speed Positive Signal
C1-	31	I/O	Port C, Channel 1, High-Speed Negative Signal
C2+	25	I/O	Port C, Channel 2, High-Speed Positive Signal
C2-	24	I/O	Port C, Channel 2, High-Speed Negative Signal
C3+	23	I/O	Port C, Channel 3, High-Speed Positive Signal
C3-	22	I/O	Port C, Channel 3, High-Speed Negative Signal
CONTROL	, SUPPLY, AND NO CONNECT	Ī	
	8		
NC	18	_	Electrically not connected. May connect to VDD or GND, or leave unconnected.
	42		
	1		
	4		
	10		
	14		
GND	17	Supply	Negative power supply voltage
GND	19	Supply	Thegative power supply voltage
	21		
	39		
	41		
	Center Pad		
SEL	9	I	Select between port B or port C. Internally tied to GND through a 100-kΩ resistor
	5		
	13		
VDD	20	Supply	y Positive power supply voltage
	30		
	40		

TEXAS INSTRUMENTS

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT	
Supply voltage (V _{DD})	Absolute minimum/maximum supply voltage	-0.5	4	V	
V-R	Differential I/O	-0.5	4	V	
Voltage	Control pin (SEL)	-0.5	VDD + 0.5	V	
Storage temperature, T _{stg}		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground terminal.

7.2 ESD Ratings

			VALUE	UNIT
\/	Floatroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Typical values for all parameters are at V_{DD} = 3.3 V and T_A = 25°C. (Temperature limits are specified by design)

			MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage		3.0	3.3	3.6	V
V_{IH}	Input high voltage (SEL pin)		2.0		VDD	V
V_{IL}	Input low voltage (SEL pin)		-0.1		0.8	V
V_{I/O_Diff}	Differential voltage (differential pins)	Switch I/O diff voltage	0		1.8	VPP
V _{I/O_CM}	Common voltage (differential pins)	Switch I/O common-mode voltage	0		2.0	V
T _A	Operating free-air temperature	Ambient temperature	0		70	°C

7.4 Thermal Information

		HD3SS3412A	
	THERMAL METRIC ⁽¹⁾	RUA (WQFN)	UNIT
		42 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	53.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	38.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	21.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	27.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	5.6	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	27.3	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
DEVICE PA	RAMETERS			<u> </u>	
I _{IH}	Input High Voltage (SEL)	$V_{DD} = 3.6 \text{ V}; V_{IN} = VDD$		95	μA
I _{IL}	Input Low Voltage (SEL)	V _{DD} = 3.6 V; V _{IN} = GND		1	μA
	Leakage Current (Differential	$V_{DD} = 3.6 \text{ V}; V_{IN} = 0 \text{ V}; V_{OUT} = 2 \text{ V}$ (I_{LK} On OPEN outputs) [Ports B and C]		130	
I _{LK}	I/O pins)	V_{DD} = 3.6 V, V_{IN} = 2 V; V_{OUT} = 0 V (I_{LK} On OPEN outputs) [Port A]		4	μΑ
I_{DD}	Supply Current	$V_{DD} = 3.6 \text{ V}$; SEL = V_{DD} /GND; Outputs Floating	4.7	6	mA
C _{ON}	Outputs ON Capacitance	V _{IN} = 0 V; Outputs Open; Switch ON	1.5		pF
C _{OFF}	Outputs OFF Capacitance	V _{IN} = 0 V; Outputs Open, Switch OFF	1		pF
R _{ON}	Output ON resistance	$V_{DD} = 3.3 \text{ V}; V_{CM} = 0.5 \text{ V} \text{ to } 1.5 \text{ V}; I_{O} = -8 \text{ mA}$	5	8	Ω
A.D.	ON-resistance match between channels	$V_{DD} = 3.3 \text{ V} ; -0.35 \text{ V} \le V_{IN} \le 1.2 \text{ V}; I_{O} = -8 \text{ mA}$		2	Ω
ΔR _{ON}	ON-resistance match between pairs of the same channel	$V_{DD} = 3.3 \text{ V}; -0.35 \text{ V} \le V_{IN} \le 1.2 \text{ V}; I_{O} = -8 \text{ mA}$		0.7	Ω
R _{FLAT_ON}	ON-resistance flatness (R _{ON(MAX)} – R _{ON(MAIN)}	$V_{DD} = 3.3 \text{ V}; -0.35 \text{ V} \le V_{IN} \le 1.2 \text{ V}$		1.15	Ω
t _{PD}	Switch propagation delay	Rsc and $R_{LOAD} = 50 \Omega$		85	ps
	SEL-to-switch T _{ON}	December 50.0	70	250	
	SEL-to-switch T _{OFF}	Rsc and $R_{LOAD} = 50 \Omega$	70	250	ns
T _{SKEW_Inter}	Inter-pair output skew (CH-CH)	Rsc and R _{LOAD} = 50 Ω		20	ps
T _{SKEW_Intra}	Intra-pair output skew (bit-bit)	Rsc and $R_{LOAD} = 50 \Omega$		8	ps
	Differential return loss (VCM =	f = 0.3 MHz	-28		
R_L	0 V) Also see <i>Typical</i>	f = 2500 MHz	-12		dB
	Characteristics	f = 4000 MHz	-11		
	Differential Crosstalk(VCM = 0	f = 0.3 MHz	-90		
X _{TALK}	V)	f = 2500 MHz	-39		dB
171211	Also see <i>Typical</i> Characteristics	f = 4000 MHz	-35		
	Differential Off-Isolation(VCM	f = 0.3 MHz	-75		
O _{IRR}	= 0 V)	f = 2500 MHz	-22		dB
11.11.	Also see <i>Typical</i> Characteristics	f = 4000 MHz	-19		
	Differential Insertion Loss	f = 0.3 MHz	-0.5		
IL	(VCM = 0 V)	f = 2500 MHz	-1.1		dB
_	Also see <i>Typical</i> Characteristics	f = 4000 MHz	-1.5		dD
BW	Bandwidth	At –3 dB	8		GHz

7.6 Dissipation Ratings

	MIN MAX	UNIT
P _D Power Dissipation	15.5 21.6	mW

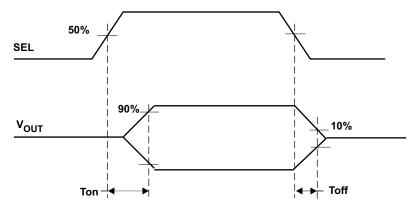
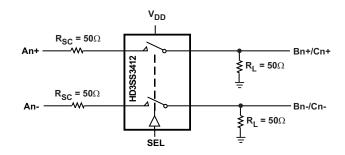
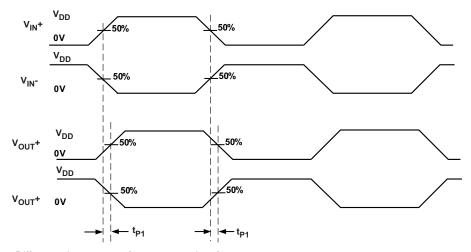




Figure 1. Switch ON and OFF Timing Diagram

 $T_{SKEWInter}$ = Difference between t_{PD} for any two pairs of outputs

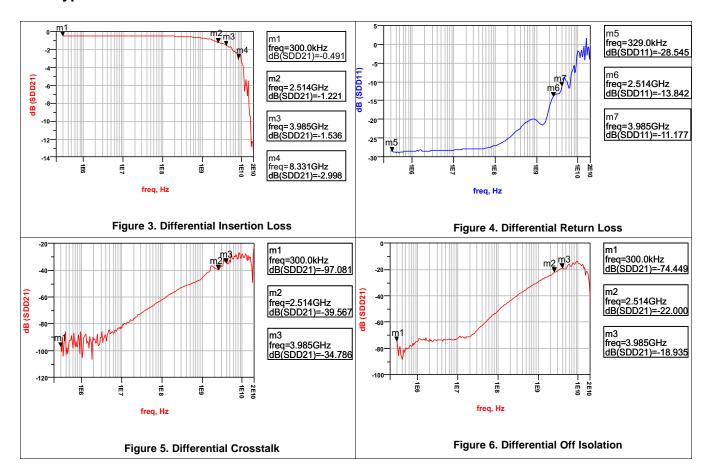

 $T_{SKEWIntra}$ = Difference between t_{P1} and t_{P2} of same pair

Figure 2. Propagation Delay Timing Diagram and Test Setup

www.ti.com

7.7 Typical Characteristics

8 Parameter Measurement Information

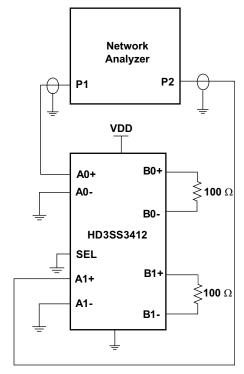


Figure 7. Cross Talk Measurement Setup

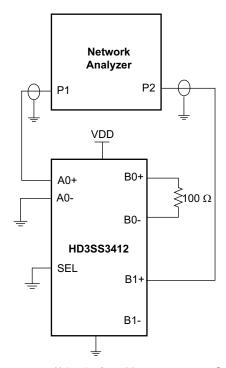


Figure 8. Off Isolation Measurement Setup

www.ti.com

Parameter Measurement Information (continued)

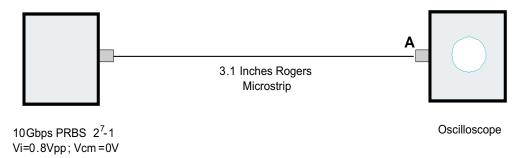


Figure 9. Source Eye Diagram Test Setup

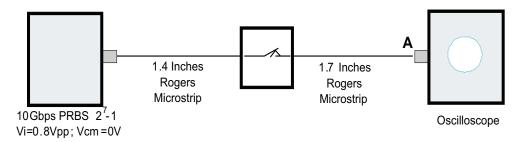
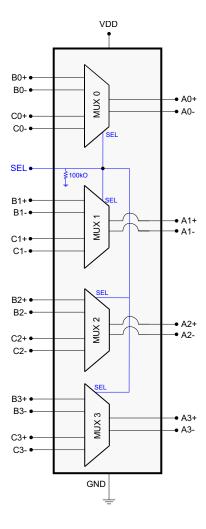


Figure 10. Output Eye Diagram Test Setup

SLAS974 – DECEMBER 2017 www.ti.com


TEXAS INSTRUMENTS

9 Detailed Description

9.1 Overview

The HD3SS3412A is a high-speed passive switch offered in an industry standard 42-pin WQFN package available in a common footprint shared by several other vendors. The device is specified to operate from a single supply voltage of 3.3 V over the commercial temperature range of 0°C to 70°C. The HD3SS3412A is a generic 4-CH high-speed mux/demux type of switch that can be used for routing high-speed signals between two different locations on a circuit board. Although it was designed specifically to address PCI Express Gen III applications, the HD3SS3412A will also support several other high-speed data protocols with a differential amplitude of < 1800 mVpp and a common-mode voltage of < 2.0 V, as with USB 3.0 and DisplayPort 1.2. The device's one select input (SEL) pin can easily be controlled by an available GPIO pin within a system or from a microcontroller.

9.2 Functional Block Diagram

www.ti.com

9.3 Feature Description

The HD3SS3412A has a single control line (SEL Pin) which can be used to control the signal path between Port A and either Port B or Port C. The one select input (SEL) pin of the device can easily be controlled by an available GPIO pin within a system or from a microcontroller. The input signal is selected using the SEL pin.

Table 1. Mux Pin Connections⁽¹⁾

PORT A CHANNEL	PORT B OR PORT C CHANNEL CONNECTED TO PORT A CHANNEL					
	SEL = L	SEL = H				
A0+	B0+	C0+				
A0-	B0-	C0-				
A1+	B1+	C1+				
A1-	B1-	C1-				
A2+	B2+	C2+				
A2-	B2-	C2-				
A3+	B3+	C3+				
A3-	B3-	C3-				

⁽¹⁾ The HD3SS3412A can tolerate polarity inversions for all differential signals on Ports A, B, and C. Take care to ensure the same polarity is maintained on Port A versus Port B/C.

9.4 Device Functional Modes

Table 2 lists the functional modes for the HD3SS3412A.

Table 2. HD3SS3412A Control Logic

CONTROL PIN (SEL)	PORT A TO PORT B CONNECTION STATUS	PORT A TO PORT C CONNECTION STATUS			
L (Default State)	Connected	Disconnected			
Н	Disconnected	Connected			

Copyright © 2017, Texas Instruments Incorporated

SLAS974 – DECEMBER 2017 www.ti.com

TEXAS INSTRUMENTS

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 AC Coupling Caps

Many interfaces require AC coupling between the transmitter and receiver. The 0402 capacitors are the preferred option to provide AC coupling, and the 0603 size capacitors also work. The 0805 size capacitors and C-packs should be avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor value of 0.1 μ F is best and the value should be match for the \pm signal pair. The placement should be along the TX pairs on the system board, which are usually routed on the top layer of the board.

There are several placement options for the AC coupling capacitors. Because the switch requires a bias voltage, the capacitors must only be placed on one side of the switch. If they are placed on both sides of the switch, a biasing voltage should be provided. A few placement options are shown below. In Figure 11, the coupling capacitors are placed between the switch and endpoint. In this situation, the switch is biased by the system/host controller.

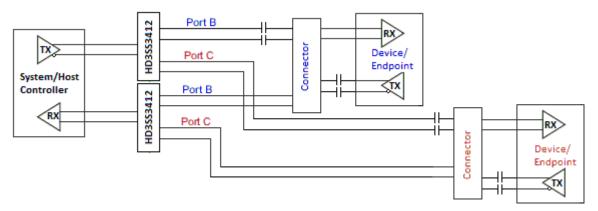


Figure 11. AC Coupling Capacitors Between Switch Tx and Endpoint Tx

In Figure 12, the coupling capacitors are placed on the host transmit pair and endpoint transmit pair. In this situation, the switch on the top is biased by the endpoint and the lower switch is biased by the host controller.

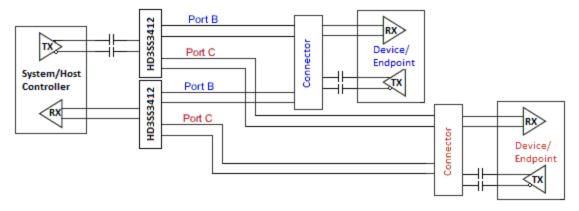


Figure 12. AC Coupling Capacitors on Host Tx and Endpoint Tx

www.ti.com

Application Information (continued)

If the common-mode voltage in the system is higher than 2 V, the coupling capacitors are placed on both sides of the switch (shown in Figure 13). A biasing voltage of less than 2 V is required in this case.

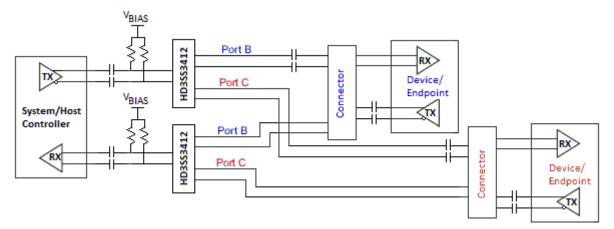


Figure 13. AC Coupling Capacitors on Both Sides of Switch

10.2 Typical Application

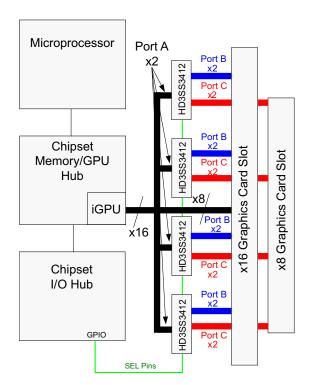
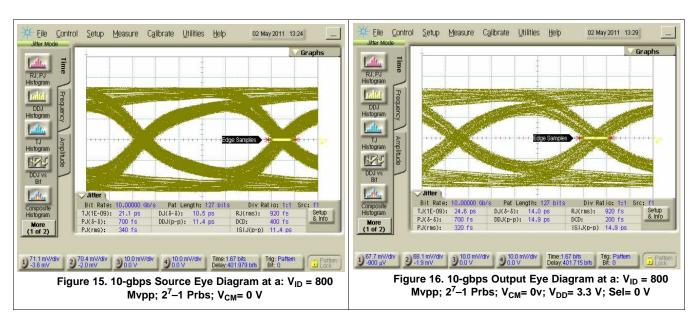


Figure 14. Typical Application Block Diagram

Typical Application (continued)

10.2.1 Design Requirements

Table 3 lists the design parameters of this example.


Table 3. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Input voltage range	3.3 V
Decoupling capacitors	0.1 μF
AC capacitors	75 nF – 200 nF (100 nF shown) USBAA TX p and n lines require AC capacitors. Alternate mode signals may or may not require AC capacitors

10.2.2 Detailed Design Procedure

- Connect VDD and GND pins to the power and ground planes of the printed circuit board, with 0.1-uF bypass capacitor
- Use +3.3-V TTL/CMOS logic level at SEL
- Use controlled-impedance transmission media for all the differential signals
- Ensure the received complimentary signals are with a differential amplitude of <1800 mVpp and a commonmode voltage of <2 V

10.2.3 Application Curves

11 Power Supply Recommendations

The HD3SS3412A requires +3.3-V digital power sources. VDD 3.3 supply must have 0.1- μ F bypass capacitors to VSS (ground) in order for proper operation. The recommendation is one capacitor for each power terminal. Place the capacitor as close as possible to the terminal on the device and keep trace length to a minimum. Smaller value capacitors like 0.01- μ F are also recommended on the digital supply terminals.

12 Layout

12.1 Layout Guidelines

- Decoupling caps should be placed next to each power terminal on the HD3SS3412A. Take care to minimize
 the stub length of the race connecting the capacitor to the power pin.
- · Avoid sharing vias between multiple decoupling caps
- · Place vias as close as possible to the decoupling cop solder pad
- Widen VDD/GND planes to reduce effect if static and dynamic IR drop
- The VBUS traces/planes must be wide enough to carry maximum of 2-A current

12.2 Layout Example

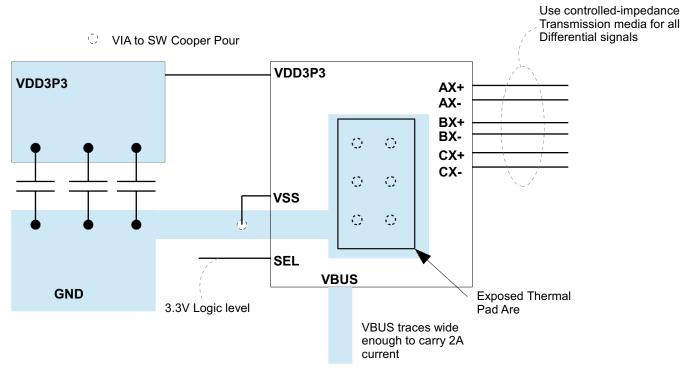


Figure 17. Layout Example

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

13 Device and Documentation Support

13.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

8-Dec-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
HD3SS3412ARUAR	ACTIVE	WQFN	RUA	42	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	HD3SS3412	Samples
HD3SS3412ARUAT	ACTIVE	WQFN	RUA	42	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	HD3SS3412	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

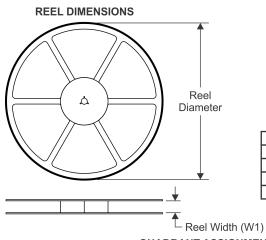
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

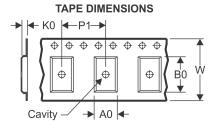
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

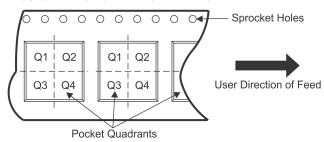
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



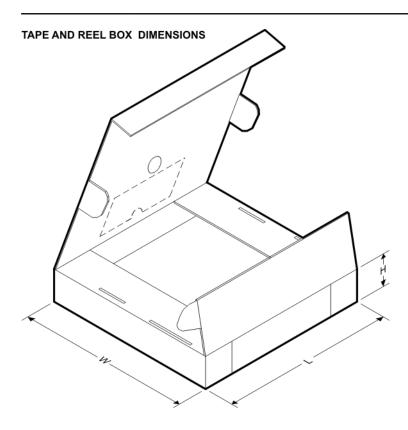

8-Dec-2017

PACKAGE MATERIALS INFORMATION

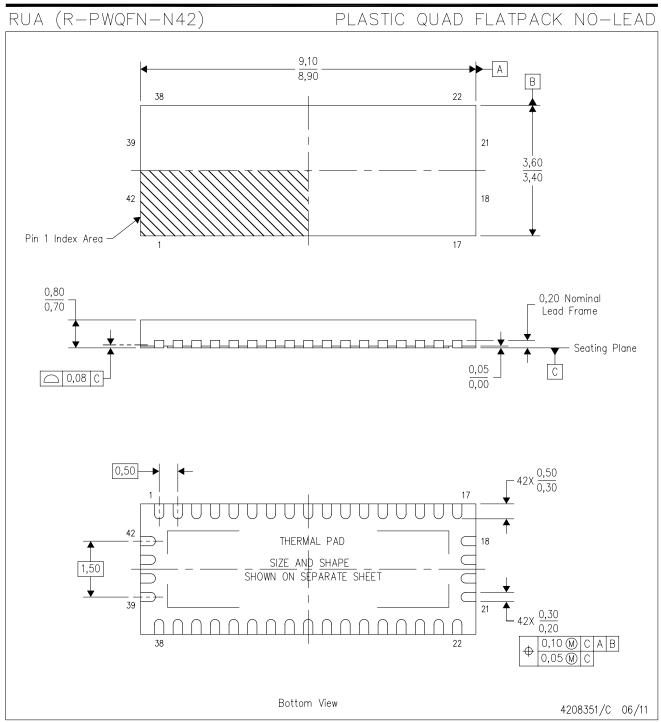
www.ti.com 7-Dec-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HD3SS3412ARUAT	WQFN	RUA	42	250	180.0	24.4	3.9	9.4	1.0	8.0	24.0	Q1

www.ti.com 7-Dec-2017

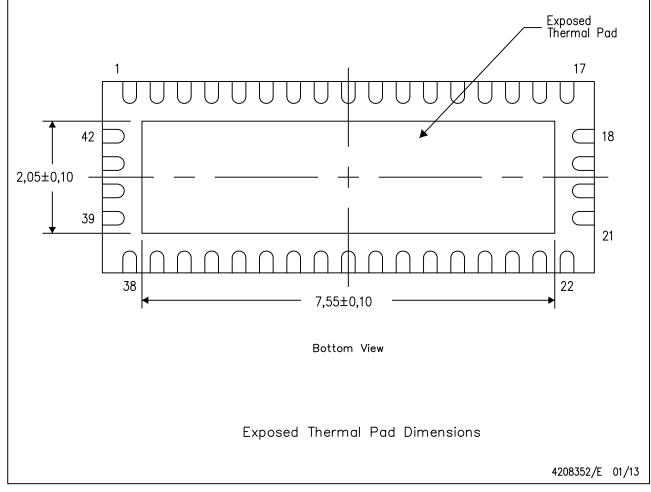
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
HD3SS3412ARUAT	WQFN	RUA	42	250	211.0	193.0	46.0	

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RUA (R-PWQFN-N42)

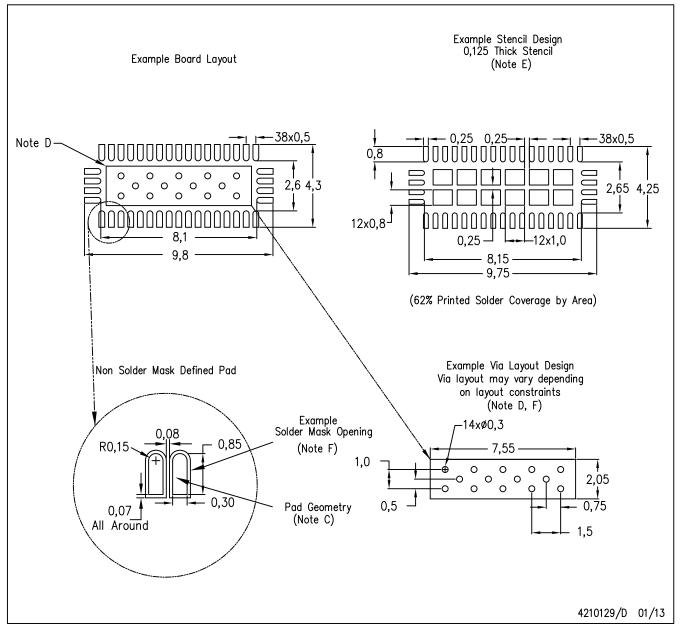

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

RUA (R-PWQFN-N42)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.