Data sheet acquired from Harris Semiconductor SCHS177B November 1997 - Revised May 2003 # High-Speed CMOS Logic Digital Phase-Locked Loop #### Features - Digital Design Avoids Analog Compensation Errors - Easily Cascadable for Higher Order Loops - Useful Frequency Range - K-Clock......DC to 55MHz (Typ) - I/D-Clock DC to 35MHz (Typ) - Dynamically Variable Bandwidth - · Very Narrow Bandwidth Attainable - Power-On Reset - Output Capability - Standard......XORPD_{OUT}, ECPD_{OUT} - Bus Driver......I/D_{OUT} - Fanout (Over Temperature Range) - Standard Outputs 10 LSTTL Loads - Bus Driver Outputs 15 LSTTL Loads - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - 'HC297 Types - Operation Voltage 2 to 6V - High Noise Immunity N_{IL} = 30%, N_{IH} = 30% of V_{CC} at 5V - CD74HCT297 Types - Operation Voltage 4.5 to 5.5V - Direct LSTTL Input Logic Compatibility V_{IL} = 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility I $_I \leq 1 \mu A$ at $V_{OL},\,V_{OH}$ ### **Pinout** CD54HC297 (CERDIP) CD74HC297, CD74HCT29 (PDIP) TOP VIEW ### Description The 'HC297 and CD74HCT297 are high-speed silicon gate CMOS devices that are pin-compatible with low power Schottky TTL (LSTTL). These devices are designed to provide a simple, cost-effective solution to high-accuracy, digital, phase-locked-loop applications. They contain all the necessary circuits, with the exception of the divide-by-N counter, to build first-order phase-locked-loops. Both EXCLUSIVE-OR (XORPD) and edge-controlled phase detectors (ECPD) are provided for maximum flexibility. The input signals for the EXCLUSIVE-OR phase detector must have a 50% duty factor to obtain the maximum lock-range. Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation (see Figure 2) or to cascade to higher order phase-locked-loops. The length of the up/down K-counter is digitally programmable according to the K-counter function table. With A, B, C and D all LOW, the K-counter is disabled. With A HIGH and B, C and D LOW, the K-counter is only three stages long, which widens the bandwidth or capture range and shortens the lock time of the loop. When A, B, C and D are all programmed HIGH, the K-counter becomes seventeen stages long, which narrows the bandwidth or capture range and lengthens the lock time. Real-time control of loop bandwidth by manipulating the A to D inputs can maximize the overall performance of the digital phase-locked-loop. The 'HC297 and CD74HCT297 can perform the classic first order phase-locked-loop function without using analog components. The accuracy of the digital phase-locked-loop (DPLL) is not affected by $V_{\rm CC}$ and temperature variations but depends solely on accuracies of the K-clock and loop propagation delays. ### **Ordering Information** | PART NUMBER | TEMP. RANGE (°C) | PACKAGE | | | |--------------|------------------|--------------|--|--| | CD54HC297F3A | -55 to 125 | 16 Ld CERDIP | | | | CD74HC297E | -55 to 125 | 16 Ld PDIP | | | | CD74HCT297E | -55 to 125 | 16 Ld PDIP | | | The phase detector generates an error signal waveform that, at zero phase error, is a 50% duty factor square wave. At the limits of linear operation, the phase detector output will be either HIGH or LOW all of the time depending on the direction of the phase error (ϕ IN - ϕ OUT). Within these limits the phase detector output varies linearly with the input phase error according to the gain K_d , which is expressed in terms of phase detector output per cycle or phase error. The phase detector output can be defined to vary between ± 1 according to the relation: phase detector output = $$\frac{\text{%HIGH - %LOW}}{100}$$ The output of the phase detector will be $K_d\phi_e$, where the phase error $\phi_e=\phi IN$ - ϕOUT . EXCLUSIVE-OR phase detectors (XORPD) and edge-controlled phase detectors (ECPD) are commonly used digital types. The ECPD is more complex than the XORPD logic function but can be described generally as a circuit that changes states on one of the transitions of its inputs. The gain (K_d) for an XORPD is 4 because its output remains HIGH (XORPD_{OUT} = 1) for a phase error of one quarter cycle. Similarly, K_d for the ECPD is 2 since its output remains HIGH for a phase error of one half cycle. The type of phase detector will determine the zero-phase-error point, i.e., the phase separation of the phase detector inputs for a ϕ e defined to be zero. For the basic DPLL system of Figure 3, ϕ e = 0 when the phase detector output is a square wave. The XORPD inputs are one quarter cycle out-of-phase for zero phase error. For the ECPD, $\phi e=0$ when the inputs are one half cycle out of phase. The phase detector output controls the up/down input to the K-counter. The counter is clocked by input frequency M_{C} which is a multiple M of the loop center frequency $f_{C}.$ When the K-counter recycles up, it generates a carry pulse. Recycling while counting down generates a borrow pulse. If the carry and the borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K-counter is considered as a frequency divider with the ratio Mf_{C}/K , the output of the K-counter will equal the input frequency multiplied by the division ratio. Thus the output from the K-counter is $(K_{\rm d}\varphi_{\rm e}Mf_{\rm C})/K$. The carry and borrow pulses go to the increment/decrement (I/D) circuit which, in the absence of any carry or borrow pulses has an output that is one half of the input clock (I/D_{CP}). The input clock is just a multiple, 2N, of the loop center frequency. In response to a carry of borrow pulse, the I/D circuit will either add or delete a pulse at I/D_{OUT}. Thus the output of the I/D circuit will be Nf_C + ($K_d\phi_eMf_c$)/2K. The output of the N-counter (or the output of the phase-locked-loop) is thus: $f_0 = f_C + (K_d \phi_e M f_C)/2KN$. If this result is compared to the equation for a first-order analog phase-locked-loop, the digital equivalent of the gain of the VCO is just $Mf_c/2KN$ or f_c/K for M = 2N. Thus, the simple first-order phase-locked-loop with an adjustable K-counter is the equivalent of an analog phase-lockedloop with a programmable VCO gain. ### Functional Diagram ## FUNCTION TABLE EXCLUSIVE-OR PHASE DETECTOR | φА ₁ | φВ | XORPD OUT | |-----------------|----|-----------| | L | L | L | | L | Н | Н | | Н | L | Н | | Н | Н | L | ## FUNCTION TABLE EDGE-CONTROLLED PHASE DETECTOR | φ Α 2 | φВ | ECPD OUT | |--------------|----------|-----------| | H or L | \ | Н | | \ | H or L | L | | H or L | ↑ | No Change | | ↑ | H or L | No Change | H = Steady-State High Level, L = Steady-State Low Level, \uparrow = LOW to HIGH ϕ Transition, \downarrow = HIGH to LOW ϕ Transition ## K-COUNTER FUNCTION TABLE (DIGITAL CONTROL) | D | С | В | Α | MODULO
(K) | |---|---|---|---|-----------------| | L | L | L | L | Inhibited | | L | L | L | Н | 2 ³ | | L | L | Н | L | 2 ⁴ | | L | L | Н | Н | 2 ⁵ | | L | Н | L | L | 2 ⁶ | | L | Н | L | Н | 2 ⁷ | | L | Н | Н | L | 2 ⁸ | | L | Н | Н | Н | 2 ⁹ | | Н | L | L | L | 2 ¹⁰ | | Н | L | L | Н | 2 ¹¹ | | Н | L | Н | L | 2 ¹² | | Н | L | Н | Н | 2 ¹³ | | Н | Н | L | L | 2 ¹⁴ | | Н | Н | L | Н | 2 ¹⁵ | | Н | Н | Н | L | 2 ¹⁶ | | Н | Н | Н | Н | 2 ¹⁷ | #### **Absolute Maximum Ratings** ### DC Supply Voltage, V_{CC} -0.5V to 7V DC Input Diode Current, I_{IK} For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ ± 20 mA DC Output Diode Current, IOK For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$±20mA DC Drain Current, per Output, IO For $-0.5V < V_O < V_{CC} + 0.5V$±25mA DC Output Source or Sink Current per Output Pin, IO #### **Thermal Information** | Thermal Resistance (Typical, Note 1) | θ_{JA} (°C/W) | |--|----------------------| | E (PDIP) Package | 67 | | Maximum Junction Temperature | 150 ⁰ C | | Maximum Storage Temperature Range | 65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300°C | #### **Operating Conditions** | Temperature Range, T _A 55°C to 125°C | |---| | Supply Voltage Range, V _{CC} | | HC Types2V to 6V | | HCT Types | | DC Input or Output Voltage, V _I , V _O 0V to V _{CC} | | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max) | | 6V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. ### **DC Electrical Specifications** | | | | ST
ITIONS | | | 25°C | | -40°C T | O 85°C | -55°C T | O 125 ⁰ C | | | | | | |------------------------------|-----------------|---------------------------------------|---------------------|---------------------|------|------|------|---------|--------|---------|----------------------|-------|-----|---|-----|---| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | | | | HC TYPES | | | | | | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | | | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | ٧ | | | | | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | ٧ | | | | | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | ٧ | | | | | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | ٧ | | | | | | High Level Output | V _{OH} | V _{IH} or
V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | ٧ | | | | | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | | | | | | | l | | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | | High Level Output
Voltage | | | -6
(Note 2) | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | | | | TTL Loads | | | -7.8
(Note 2) | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | | | | | Low Level Output | V _{OL} | V _{IH} or | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | | | | | Voltage
CMOS Loads | | V_{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | | | | | | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | | | | | Low Level Output
Voltage | | | 4
(Note 2) | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | TTL Loads | | | 5.2
(Note 2) | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | ### DC Electrical Specifications (Continued) | | | | ST
ITIONS | | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |--|------------------------------|---------------------------------------|---------------------|---------------------|------|------|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Input Leakage
Current | lı | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | | HCT TYPES | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IH} or
V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | Iį | V _{CC} to
GND | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 2) | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μА | #### NOTE: ### **HCT Input Loading Table** | INPUT | UNIT LOADS | |---|------------| | EN _{CTR} , D/Ū | 0.3 | | A, B, C, D, K _{CP} , φA ₂ | 0.6 | | I/D _{CP} , φA ₁ , φB | 1.5 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μA max at 25 $^{o}\text{C}.$ ^{2.} For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA. ### **Prerequisite For Switching Function** | | | | 25 | °C | -40°C T | O 85°C | -55°C T | O 125°C | | |---|------------------|---------------------|-----|-----|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | | | Maximum Clock Frequency | f _{MAX} | 2 | 6 | - | 5 | - | 4 | - | MHz | | K _{CP} | | 4.5 | 30 | - | 24 | - | 20 | - | MHz | | | | 6 | 35 | - | 28 | - | 24 | - | MHz | | Maximum Clock Frequency | f _{MAX} | 2 | 4 | - | 3 | ı | 2 | - | MHz | | I/D _{CP} | | 4.5 | 20 | - | 16 | ı | 13 | - | MHz | | | | 6 | 24 | - | 19 | - | 15 | - | MHz | | Clock Pulse Width | t _w | 2 | 80 | - | 100 | - | 120 | - | ns | | K _{CP} | | 4.5 | 16 | - | 20 | - | 24 | - | ns | | | | 6 | 14 | - | 17 | - | 20 | - | ns | | Clock Pulse Width | t _W | 2 | 125 | - | 155 | - | 190 | - | ns | | I/D _{CP} | | 4.5 | 25 | - | 31 | - | 38 | - | ns | | | | 6 | 21 | - | 26 | - | 32 | - | ns | | Set-up Time | tsu | 2 | 100 | - | 125 | - | 150 | - | ns | | D/\overline{U} , EN_{CTR} to K_{CP} | | 4.5 | 20 | - | 25 | - | 30 | - | ns | | | | 6 | 17 | - | 21 | - | 26 | - | ns | | Hold Time | t _H | 2 | 0 | - | 0 | - | 0 | - | ns | | D/\overline{U} , EN_{CTR} to K_{CP} | | 4.5 | 0 | - | 0 | - | 0 | - | ns | | | | 6 | 0 | - | 0 | - | 0 | - | ns | | HCT TYPES | | | | | | | | | | | Maximum Clock Frequency
K _{CP} | f _{MAX} | 4.5 | 30 | - | 24 | - | 20 | - | MHz | | Maximum Clock Frequency I/D _{CP} | f _{MAX} | 4.5 | 20 | - | 16 | - | 13 | - | MHz | | Clock Pulse Width
K _{CP} | t _w | 4.5 | 16 | - | 20 | - | 24 | - | ns | | Clock Pulse Width I/D _{CP} | t _w | 4.5 | 25 | - | 31 | - | 38 | - | ns | | Set-up Time D/\overline{U} , EN_{CTR} to K_{CP} | t _{SU} | 4.5 | 20 | - | 25 | - | 30 | - | ns | | Hold Time D/\overline{U} , EN_{CTR} to K_{CP} | t _H | 4.5 | 0 | - | 0 | - | 0 | - | ns | ### Switching Specifications Input t_r , $t_f = 6 \text{ns}$ | | | TEST | | 25 | °C | -40°C TO 85°C | -55°C TO 125°C | | |---|-------------------------------------|-----------------------|---------------------|-----|-----|---------------|----------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | TYP | MAX | MAX | MAX | UNITS | | HC TYPES | | | | | | | | | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | 1 | 175 | 220 | 265 | ns | | I/D _{CP} to I/D _{OUT} | | | 4.5 | - | 35 | 44 | 53 | ns | | | | | 6 | - | 30 | 34 | 43 | ns | ### Switching Specifications Input t_r , t_f = 6ns (Continued) | | | TEST | | 25 | °C | -40°C TO 85°C | -55°C TO 125°C | | |--|-------------------------------------|-----------------------|---------------------|-----|-----|---------------|----------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | TYP | MAX | MAX | MAX | UNITS | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | 150 | 190 | 225 | ns | | ϕA_1 , ϕB to $XORPD_{OUT}$ | | | 4.5 | = | 30 | 38 | 45 | ns | | | | | 6 | - | 26 | 33 | 38 | ns | | Propagation Delay, | t _{PHL} , t _{PHL} | C _L = 50pF | 2 | - | 200 | 250 | 300 | ns | | $\phi B, \phi A_2$ to ECPD _{OUT} | | | 4.5 | = | 40 | 50 | 60 | ns | | | | | 6 | - | 34 | 43 | 51 | ns | | Output Transition Time | t _{TLH} | C _L = 50pF | 2 | = | 75 | 95 | 110 | ns | | XORPD _{OUT}
ECPD _{OUT} | | | 4.5 | = | 15 | 19 | 22 | ns | | | | | 6 | = | 13 | 16 | 19 | ns | | Output Transition Time | t _{TLH} | C _L = 50pF | 2 | = | 60 | 75 | 90 | ns | | I/D _{OUT} | | | 4.5 | = | 12 | 15 | 18 | ns | | | | | 6 | = | 10 | 13 | 15 | ns | | Input Capacitance | CI | - | - | = | 10 | 10 | 10 | pF | | HCT TYPES | • | | | | | | | | | Propagation Delay, I/D _{CP} to I/D _{OUT} | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | 35 | 44 | 53 | ns | | Propagation Delay,
φA ₁ , φB to XORPD _{OUT} | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | 30 | 38 | 45 | ns | | Propagation Delay,
φB, φA ₂ to ECPD _{OUT} | t _{PHL} , t _{PHL} | C _L = 50pF | 4.5 | - | 40 | 50 | 60 | ns | | Output Transition Time
XORPD _{OUT} | t _{TLH} | C _L = 50pF | 4.5 | - | 15 | 19 | 22 | ns | | Output Transition Time
ECPD _{OUT} | t _{TLH} | C _L = 50pF | 4.5 | - | 12 | 15 | 18 | ns | | Input Capacitance | Cl | - | - | - | 10 | 10 | 10 | pF | FIGURE 1. DPLL USING BOTH PHASE DETECTORS IN A RIPPLE-CANCELLATION SCHEME FIGURE 2. DPLL USING EXCLUSIVE-OR PHASE DETECTION FIGURE 3. TIMING DIAGRAM: I/DOUT IN-LOCK CONDITION FIGURE 4. TIMING DIAGRAM: EDGE CONTROLLED PHASE COMPARATOR WAVEFORMS FIGURE 5. TIMING DIAGRAM: EXCLUSIVE OR PHASE DETECTOR WAVEFORMS FIGURE 6. WAVEFORMS SHOWING THE CLOCK (I/D $_{ m CP}$) TO OUTPUT (I/D $_{ m OUTP}$) PROPAGATION DELAYS, CLOCK PULSE WIDTH, OUTPUT TRANSITION TIMES AND MAXIMUM CLOCK PULSE FREQUENCY FIGURE 7. WAVEFORMS SHOWING THE PHASE INPUT ($\emptyset B$, $\emptyset A_1$) TO OUTPUT (XORPD $_{OUT}$) PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES FIGURE 8. WAVEFORMS SHOWING THE PHASE INPUT ($\emptyset B$, $\emptyset A_2$) TO OUTPUT (ECPD $_{OUT}$) PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance. FIGURE 9. WAVEFORMS SHOWING THE CLOCK (KCP) PULSE WIDTH AND MAXIMUM CLOCK PULSE FREQUENCY, AND THE INPUT (D/ $\overline{\rm U}$, ENCTR) TO CLOCK (KCP) SETUP AND HOLD TIMES 10-Jun-2014 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|----|----------------|-------------------|----------------------|--------------------|--------------|--------------------------------|---------| | 5962-8999001EA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | 5962-8999001EA
CD54HC297F3A | Samples | | CD54HC297F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | 5962-8999001EA
CD54HC297F3A | Samples | | CD74HC297E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HC297E | Samples | | CD74HC297EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HC297E | Samples | | CD74HCT297E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HCT297E | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. ⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. ### PACKAGE OPTION ADDENDUM 10-Jun-2014 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54HC297, CD74HC297: Catalog: CD74HC297 Military: CD54HC297 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications #### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ### N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. #### **IMPORTANT NOTICE** Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.