

Description

The SX10H03S uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 30V I_{D} = 10A$

 $R_{DS(ON)} < 12m\Omega$ @ $V_{GS}=10V$

Application

Lithium battery protection

Wireless impact

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage 30		V
VGS	Gate-Source Voltage ±20		V
l o@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹ 10		A
lo@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹	Continuous Drain Current, V _{GS} @ 10V ¹ 8.2	
IDM	Pulsed Drain Current ²	Pulsed Drain Current ² 30	
EAS	Single Pulse Avalanche Energy ³ 24.2		mJ
P @Tc=25°C	Total Power Dissipation⁴	26	W
P o@T a=25°C	Total Power Dissipation ⁴	1.67	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
R₀JA	Thermal Resistance Junction-Ambient ¹	nal Resistance Junction-Ambient ¹ 85	
Reuc	Thermal Resistance Junction-Case ¹	25 °C/W	

Electrical Characteristics (T $_{\!J}$ =25 $^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	36		V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.023		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=15A		8.5	12	0
		Vgs=4.5V , Ip=10A		14	18	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.0	1.6	2.5	V
△VGS(th)	V _{GS(th)} Temperature Coefficient	·		-5.08		mV/℃
IDSS	Drain Source Lookage Current	V _D S=24V , V _G S=0V , T _J =25°C			1	1 5 uA
1033	Drain-Source Leakage Current	V _D s=24V , V _G s=0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=5V , Ip=15A		24.4		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω
Qg	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =4.5V , I _D =12A		9.82		
Qgs	Gate-Source Charge			2.24		nC
Qgd	Gate-Drain Charge			5.54		
Td(on)	Turn-On Delay Time			6.4		
Tr	Rise Time	 V _{DD} =15V , V _{GS} =10V , R _G =1.5Ω		39		
Td(off)	Turn-Off Delay Time	lb=20A		21		ns
Tf	Fall Time			4.7		
Ciss	Input Capacitance			896		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		126		pF
Crss	Reverse Transfer Capacitance			108		
IS	Continuous Source Current ^{1,5}	\/\/\/\/			37	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			75	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1	V

Note:

- $1\,{}_{\sim}$ The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\, \leqq \, 300 \text{us} \,$, duty cycle $\, \leqq \, 2\%$
- $3\,{\mbox{.}}$ The power dissipation is limited by $175\,{\mbox{°C}}$ junction temperature
- $4\sqrt{100}$ The data is theoretically the same as $10\sqrt{100}$ and $10\sqrt{100}$, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

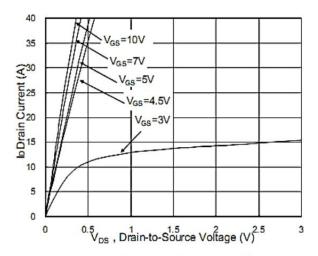


Fig.1 Typical Output Characteristics

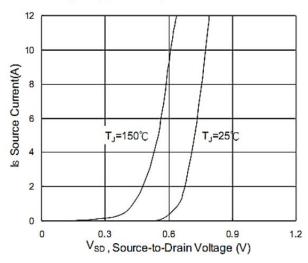


Fig.3 Forward Characteristics of Reverse

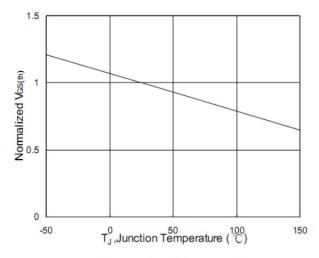


Fig.5 Normalized V_{GS(th)} vs. T_J

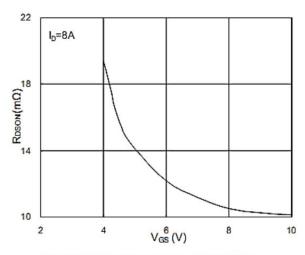


Fig.2 On-Resistance vs. G-S Voltage

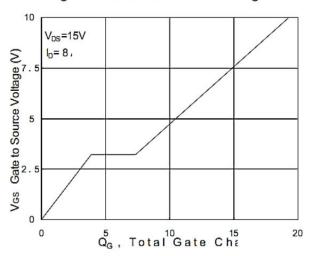


Fig.4 Gate-Charge Characteristics

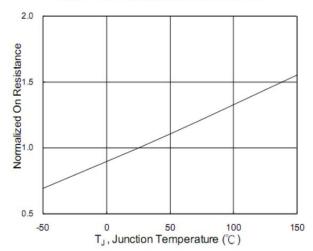
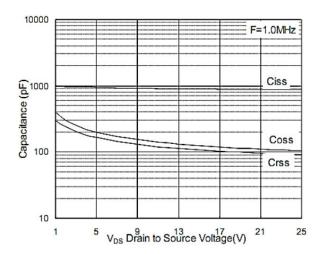



Fig.6 Normalized RDSON vs. TJ

Typical Characteristics

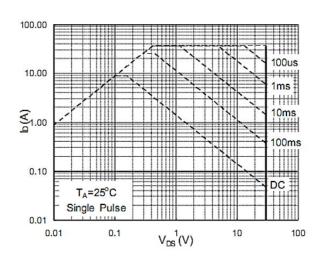


Fig.7 Capacitance

Fig.8 Safe Operating Area

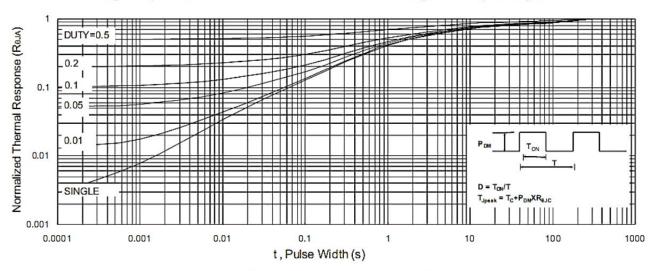
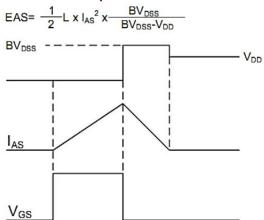
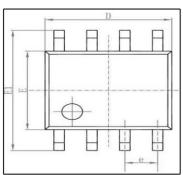
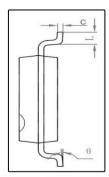
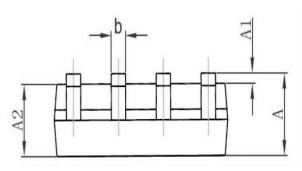


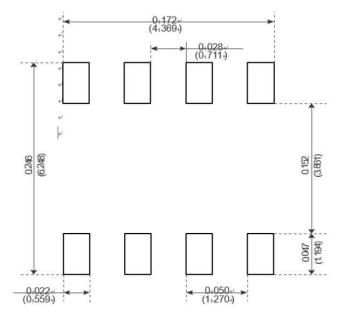

Fig.9 Normalized Maximum Transient Thermal Impedance




Fig.11 Unclamped Inductive Switching Waveform


www.sxsemi.com




Package Mechanical Data-SOP-8

Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0. 050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

5