

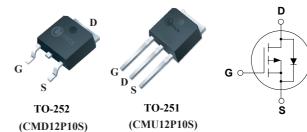
100V P-Channel MOSFET

General Description

The 12P10S uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.

Features

- P-Channel
- Low ON-resistance.
- Fast Switching
- 100% avalanche tested


Product Summary

BVDSS	RDSON	ID
-100V	0.24Ω	-9A

Applications

- Power Switch
- DC / DC converter

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	-100	V	
V_{GS}	Gate-Source Voltage	±30	V	
I _D @T _C =25°C	Continuous Drain Current	-9	Α	
I _{DM}	Pulsed Drain Current (Note 1)	-27	А	
I _{AR}	Avalanche Current (Note 1)	-9	Α	
P _D @T _C =25°C	Total Power Dissipation	40	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
T _J	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient		50	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-case		2.5	°C/W

CMD12P10S / CMU12P10S

100V P-Channel MOSFET

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-100			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-6A			0.24	Ω
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=-250uA$	-1		-3	V
1	Drain Source Lookage Current	V _{DS} =-100V, V _{GS} =0V			-1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-80V, T _C =125°C			-10	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-20V, I _D =-10A (Note 2)		12		S
Qg	Total Gate Charge	I _D =-9A		18		
Q _{gs}	Gate-Source Charge	V _{DS} =-80V		4		nC
Q_{gd}	Gate-Drain Charge	V _{GS} = -10V (Note 2, 3)		8		
T _{d(on)}	Turn-On Delay Time	V _{DS} = -50V		13		
Tr	Rise Time	I _D =-9A		140		20
T _{d(off)}	Turn-Off Delay Time	R _G =25Ω		30		ns
T _f	Fall Time	(Note 2, 3)		50		
C _{iss}	Input Capacitance			1300		
Coss	Output Capacitance	V _{DS} =-25V, V _{GS} =0V , f=1MHz		120		pF
C _{rss}	Reverse Transfer Capacitance			30		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
trr	Reverse Recovery Time	I _S =-9A. V _{GS} =0V		105		ns
Qrr	Reverse Recovery Charge	dI/dt=-100A/μs (Note 2)		0.4		μC
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-12A			-1.2	V

Notes. 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. Pulse Test : Pulse width \leqslant 300 s, Duty cycle \leqslant 2% 3. Essentially independent of operating temperature

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.