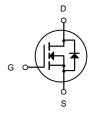


General Description

The FDBL86063-F085 use advanced SGT MOSFET technology to provide low RDS(ON), low gate charge, fast switching and excellentavalanche characteristics.

This device is specially designed to get better ruggedness.

General Features


 $V_{DS} = 100V I_{D} = 300A$

 $R_{DS(ON)}$ < 2.6m Ω @ V_{GS} =10V

Applications

Battery Protection

Power Distribution

N-Channel MOSFET

Package Marking and Ordering Information

Product ID	Pack	Brand	Qty(PCS)
FDBL86063-F085	TOLL	HXY MOSFET	2000

Absolute Maximum Ratings at Tj=25°C unless otherwise noted

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _G s	±20	V	
Continuous Drain Current ¹	T _C =25°C	I-	300	Α	
Continuous Diain Current	T _C =100°C	- I _D	163		
Pulsed Drain Current ²	I _{DM}	1028	А		
Single Pulse Avalanche Energy ³		EAS	583	mJ	
Avalanche Current		las 54		А	
Total Power Dissipation T _C =25°C		P _D	379	W	
Operating Junction and Storage Temperature Range		TJ, T _{STG}	-55 to 150	°C	
Thermal Resistance from Junction-to-Ambient ¹		Reja	59	°C/W	
Thermal Resistance from Junction-to-Case ¹		Rejc	0.33	°C/W	

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		2.0	2.6	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	3	4	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} -V _{DS} , I _D -2500A				mV/°C
1	Drain-Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	uA
I _{DSS}	Diam-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C			100	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =20A		76		S
R_g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		2.3		Ω
Qg	Total Gate Charge			150		
Q_{gs}	Gate-Source Charge	V_{DS} =50V , V_{GS} =10V , I_{D} =20A		32.5		nC
Q_{gd}	Gate-Drain Charge			49		
T _{d(on)}	Turn-On Delay Time			27		
T _r	Rise Time	VGS=10V, VDD=50V,		78.5		
T _{d(off)}	Turn-Off Delay Time	RG=3Ω, ID=20A		110		ns
T _f	Fall Time			86		
C _{iss}	Input Capacitance			9030		
Coss	Output Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		1505		pF
C _{rss}	Reverse Transfer Capacitance			40		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V V 0V 5 0			300	Α
Ism	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			1000	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time			90		nS
Qrr	Reverse Recovery Charge	F = 20A, di/dt =100A/μs		175		nC

FÈ he Ádata Ádested Ány Ásurface Ámounted Ánn Ás Ál Ánch² FR-4 Ánoard Ávith Á2 OZ Ácopper.

CÌ he Álata Áested Áby Ápulsed Ápulse Ávidth Á 300 us Á Áluty Ásycle Á 2%
HÌ he ÁEAS Álata Áshows ÁMax. Á ating Á The Áest Ásondition Ás Á RÁMA »Ô, VDD=50V, VGS=10V, L=0.4 mH, IAS=54A.
I È he Ápower Álissipation Ás Áimited Áby Ál 50°C junction Áemperature
Í È he Álata Ás Áheoretically Áhe Ásame ÁssÁ_{D Á}and Á_{D MÁ}Án Áreal Áspplications Áshould Ábe Áimited Áby Áotal Ápower Á dissipation.

Typical Characteristics

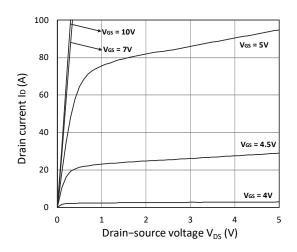


Figure 1. Output Characteristics

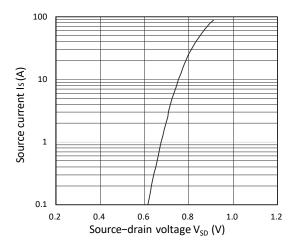


Figure 3. Forward Characteristics of Reverse

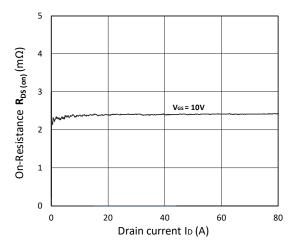


Figure 5. $R_{DS(ON)}$ vs. I_D

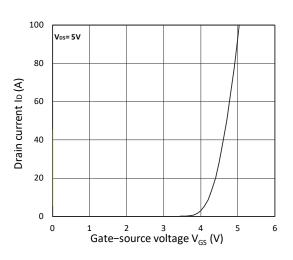


Figure 2. Transfer Characteristics

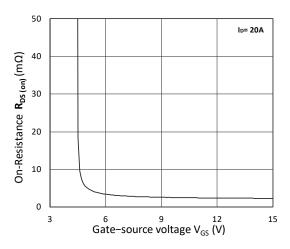


Figure 4. $R_{\text{DS}(\text{ON})}\,$ vs. $V_{\text{GS}}\,$

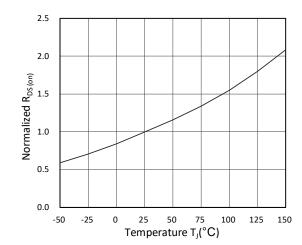


Figure 6. Normalized $R_{DS(on)}$ vs. Temperature

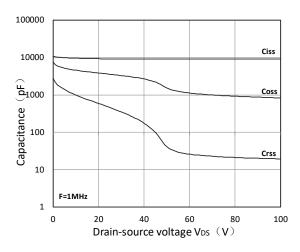


Figure 7. Capacitance Characteristics

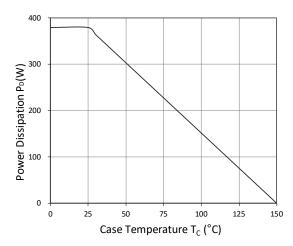


Figure 9. Power Dissipation



Figure 8. Gate Charge Characteristics

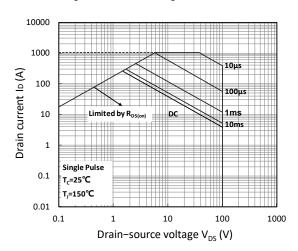


Figure 10. Safe Operating Area

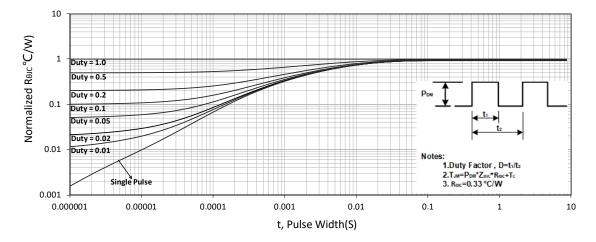


Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

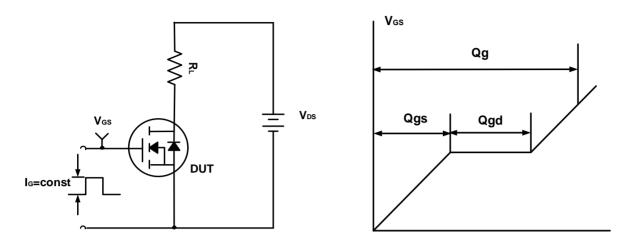
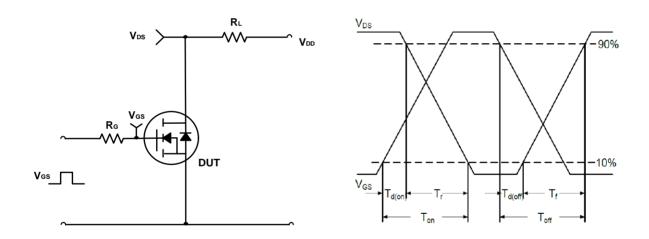
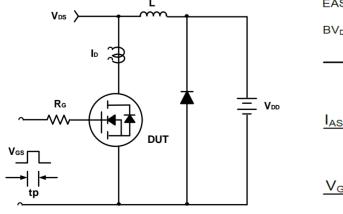
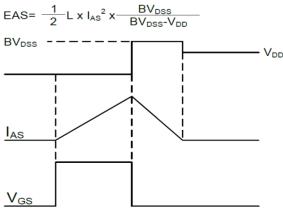
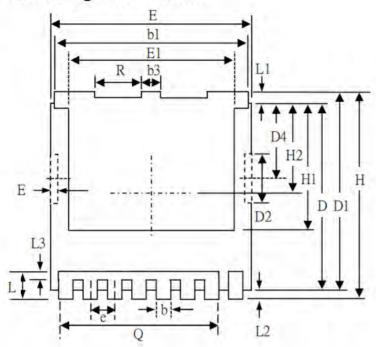
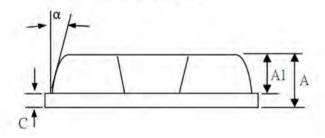


Figure A. Gate Charge Test Circuit & Waveforms


Figure B. Switching Test Circuit & Waveforms



TOLL Package Information

- 1.All Dimension Are In Millimeters.
- 2.Dimension Does Not Include Mold Protrusions.

SYMBOLS	MIN	NOM	MAX	
A	2.20	2.30	2.40	
A1	1.70	1.80	1.90	
b	0.70	0.80	0.90	
bl	9.70	9.80	9.90	
b3	1.10	1.20	1.30	
c	0.40	0.50	0.60	
D	10.28	10.38	10.58	
D1	9.80	11.08	11.80	
D2	3.10	3.30	3.50	
D4	4.37	4.55	4.77	
E	9.70	9.90	10.10	
E1	7.90	8.10	8.30	
E2	0.50	.50 0.70		
e		1.20BCS		
Н	11.48 11.68		11.88	
Hl		6.95BCS		
H2		5.89BCS		
L	1.40	1.90	2.10	
Ll	0.60	0.70	0.80	
L2	0.50	0.60	0.70	
L3	0.30	0.70	1.30	
Q	8.00 REF.			
R	2.95	3.10	3.25	
α	4°		10°	

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.