厦门国科安芯科技有限公司

ASM1042 应用笔记

AN001

目录

_	简介	.3
_	通信线缆选型	.3
\equiv	节占数量	3

一 简介

ASM1042 在速率大于等于 1Mbps 速率下通信时对于线缆、拓扑和节点数量 有明确要求,本文档对以上要求进行说明。

二 通信线缆选型

对于大于 1Mbps 或者拓扑复杂传输距离较远的接口网络,需注意通信线缆的选型,线缆特征阻抗 120Ω(±10%),裸线单位电容小于 50pF/m,屏蔽双绞线效果更好,绞距小于 25mm。首选直线型拓扑,根据实际拓扑网络加端接电阻,根据单段拓扑网络实际通信速率、容性负载以及信号完整性确定最大节点数量。

三 节点数量

对于 5Mbps 高速率通讯场景,标准手拉手连接拓扑情况下,最多节点数量要根据实际工程中电缆材质、长度、节点负载、终端电阻分配等具体来定,5Mbps 速率下建议节点数量不超过 8 个,速率降低可以增加节点数量,实际节点数量的增加要保证信号上升、下降时间满足标准要求。

厦门国科安芯科技有限公司

ASM1042 数据手册

CANFD 通信接口芯片

目录

1	特点	2
2	产品描述	4
	引脚定义	
	内部电路结构图	
5	总线收发器电器特性	8
	测试电路波形时序图	
7	说明	13
8	外形尺寸	16
	修订历史	

1 特点

- 通过 AEC-Q100 Grade1 认证
- 符合 ISO 11898-2:2016 和 ISO 11898-5:2007 物理层标准
- 提供功能安全
- -可帮助进行功能安全系统设计的文档
- 支持 5Mbps
- -具有较短的对称传播延迟时间和快速循环次数, 可增加时序裕量
- -在有负载 CAN 网络中实现更快的数据速率
- EMC 性能: 支持 SAE J2962-2 和 IEC 62228-3 (最高 500kbps) 无需共模扼流 圏
- I/O 电压范围支持 3.3V 和 5V MCU
- 未供电时具有理想无源行为
- -总线和逻辑引脚处于高阻态(无负载)
- -在总线和 RXD 输出上实现上电/断电无干扰运行
- 保护特性
- -IEC ESD 保护高达±8kV
- -总线故障保护: ±70V
- -VCC 和 VIO 电源终端具有欠压保护
- -驱动器显性超时保护(TXD DTO) -数据速率低至 10kbps
- -热关断保护(TSD)
- 收发器共模输入电压: ±30V

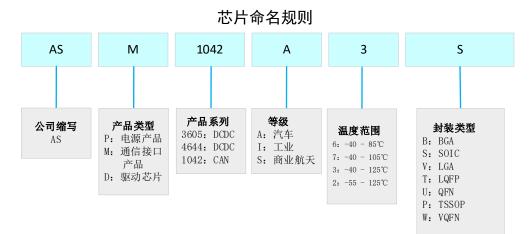
● 典型循环延迟: 110ns

● AEC-Q100 Grade1 车规认证 (汽车级)

● SEU: ≥75MeV. cm²/mg 或10⁻⁵次/器件. 天(商业航天级)

● SEL: ≥75MeV.cm²/mg(商业航天级)

● TID: ≥150krad (Si) (商业航天级)



2 产品描述

这款 CAN 收发器系列符合 ISO1189-2 (2016)高速 CAN (控制器局域网络) 物理层标准。所有器件均设计用于数据速率高达 2Mbps (兆位每秒) 的 CAN FD 网络。该收发器支持 5Mbps 的数据速率,且提供 I/O 电平的辅助电源输入,用于设置输入引脚阈值和 RXD 输出电平。该系列具备低功耗待机模式及远程唤醒请求特性。此外,该器件提供多种保护特性来提高器件和网络的耐用性。

芯片型号如下:

芯片类型	芯片型号	等级	封装	温度范围
通信接口芯片	ASM1042I6S	工业级	SOP8	-40 to 85 °C
通信接口芯片	ASM1042A3S	汽车级(VIO)	SOP8	-40 to 125 °C
通信接口芯片	ASM1042A3SA	汽车级(NC)	SOP8	-40 to 125 °C
通信接口芯片	ASM1042S2S	商业航天级	SOP8	-55 to 125 °C

基本电气参数如下:

参数	符号	最小值	最大值	单位
总线供电电压	VCC	-0.3	7	V
IO 口供电电压	VIO	-0.3	7	V
CAN 总线 IO 电压范围	VBUS	-70	70	V
CANH 和 CANL 最大压 差	V(Diff)	-70 70		V
逻辑端口电压 范围	VTXD、 VSTB、VRXD	-0.3	7	V
RXD 输出电流	IO(RXD)	-8	8	mA
结温温度	TJ	-55	150	$^{\circ}$

3 引脚定义

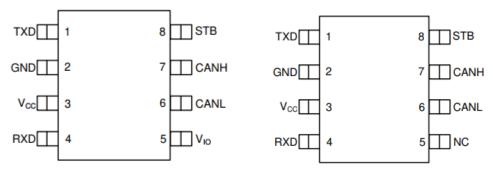


图 1 FD CAN 芯片引脚分布图

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端
2	GND	地
3	VCC	收发器 5V 供电
4	RXD	接收器输出端
5	VIO	收发器 I/O 供电电源
5	NC	悬空
6	CANL	低电位 CAN 电压输入输出端
7	CANH	高电位 CAN 电压输入输出端
8	STB	待机模式控制端、高电平为待机模式

4 内部电路结构图

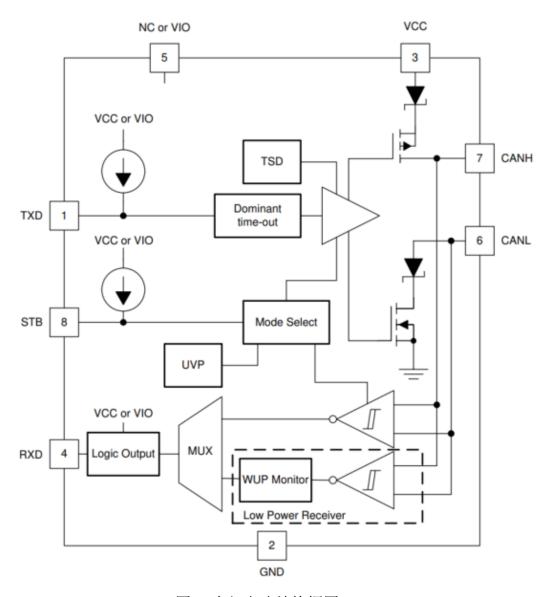


图 2 内部电路结构框图

5 总线收发器电器特性

基本参数描述

特性	符号	极限/标准值			单位
		最小	经典	最大	7-12
显性功耗(Normal mode), TXD=0V,R _L =60Ω, C _L =open,R _{CM} =open, STB=0V,负载条件如图 3 所示。			40	70	
总线故障显性功耗(Normal mode),TXD=0,V _{CANH} =- 12V,R _L =open, C _L =open,R _{CM} =open,负 载条件如图 3 所示。				110	mA
隐性功耗(Normal mode), TXD=V _{CC} or V _{IO} , R _L =50Ω,C _L =open, R _{CM} =open,STB=0V,负 载条件如图 3 所示。	Icc		1.5	2.5	
Standby mode 功耗, TXD=V _{IO} ,R _L =50Ω, C _L =open,R _{CM} =open, STB=V _{IO} ,负载条件如图 3 所示。			0.5	5	μΑ
I/O 功耗(Normal mode)	li a		90	300	
I/O 功耗(Standby mode)	I _{IO}		12	17	
Vcc欠压保护上升阈值电压	UVcc		4.2	4.4	V
Vcc欠压保护下降阈值电压	0	3.8	4.0	4.25	V
Uvcc 滞回电压	V _{HYS(UVVCC)}		200		mV
V _{IO} 欠压保护阈值	UV_{VIO}	1.3		2.75	V
Uvvio滞回电压	V _{HYS(UVVIO)}		80		mV
显性输出电压	V_{CANH}	2.75		4.5	V
(Normal mode)	V_{CANL}	0.5		2.25	V

				7 (01111	
50Ω≤R∟≤65Ω,C∟=open, R _{CM} =open,负载条件如图 3 所示。	VCANH-VCANL	1.5		3	
隐性输出电压 (Normal mode)	V_{CANH} and V_{CANL}	2	0.5×VCC	3	
TXD=V _{CC} or V _{IO} , V _{IO} =V _{CC} , STB=0V, R _L =open(no load), R _{CM} =open,负载条件如图 3所示。	VCANH-VCANL	-50		50	mV
输出电压(Standby mode)	V _{CANH}	-0.1	0	0.1	
STB=V _{IO} ,R _L =open(no load),R _{CM} =open,负载条	V _{CANL}	-0.1	0	0.1	V
件如图 3 所示。	V _{CANH} -V _{CANL}	-0.2	0	0.2	
输出电压对称性, R _{TERM} =60Ω, C _{SPLIT} =4.7nF, T _{XD} =250kHz, 1MHz, 负载情 况如图 6 所示。	Vsym	0.9		1.1	V/V
直流输出电压对称性, R _L =60Ω,C _L =open, R _{CM} =open,负载情况如图 3 所示。	V _{SYM_DC}	-0.4		0.4	V
隐性短路输出电流(Normal mode), V _{BUS} =V _{CANH} =V _{CANL} , -27V≤V _{BUS} ≤32V	los(ss_rec)	-5		5	mA
环路延时(隐性转显性),负载情况如图 5 所示。	t _{PROP(LOOP1)}		100	160	
环路延时(显性转隐性),负载情况如图 5 所示。	t _{PROP(LOOP2)}		110	175	ns
Normal to Standby 模式切换时间	t _{MODE}		9	45	μs
过滤唤醒模式时间	twk_filter	0.5		1.8	ļ
发送延时(隐性转显性), 负载情况如图 3 所示, R _L =60Ω, C _L =100pF。	t _{pHR}		55		na
发送延时(显性转隐性),负载情况如图 3 所示, R _L =60Ω,C _L =100pF。	t _{pLD}		75		ns
显性超时时间	t _{TXD_DTO}	1.2		3.8	ms
发送延时(隐性转显性),	t _{pRH}		65		ns

负载情况如图 4 所示, C _{L_RXD} =15pF。			
发送延时(隐性转显性), 负载情况如图 4 所示, C _{L_RXD} =15pF。	t _{pDL}	50	
人体放电模型(HBM)	V _{ESD_HBM}	±6000	
组件充电模型(CDM)	V _{ESD_CDM}	±1500	V
机械模型(MM)	V _{ESD_MM}	±200	

6 测试电路波形时序图

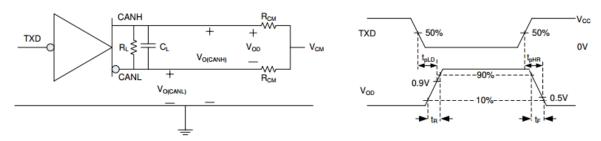


图 3 FDCAN 发送测试电路与时序图

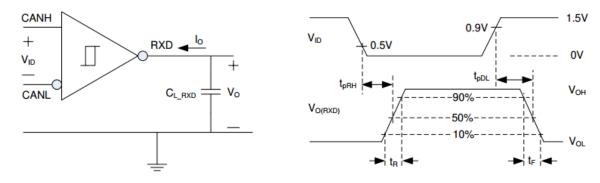


图 4 FDCAN 接收测试电路与时序图

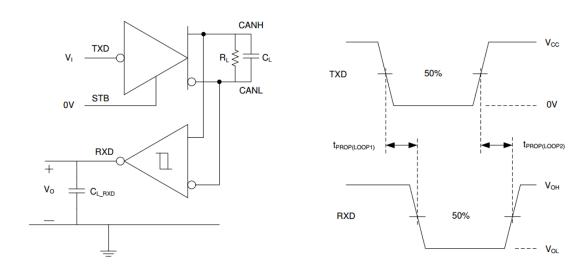


图 5 环路延时时间测试电路与时序图

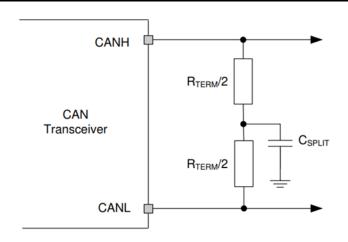


图 6 输出电平对称性测试电路

7 说明

1、过温保护

该收发器芯片具有过温保护功能,过温保护触发后,将关闭驱动电路,减小驱动 电流,从而降低芯片温度。

2、欠压保护

该收发器芯片 VCC 和 VIO 电源引脚均具有欠压保护功能,当 VCC 和 VIO 电压低于阈值电压时保护总线。

3、 待机模式与低功耗唤醒功能

当 STB 设置为高电平时,可激活待机模式。此时 CAN 发送器和接收器均关闭,以 节省功耗。STB 高电平信号激活低功耗收发器和唤醒滤波器,当总线检测到符合图 7 中的特定帧后,引脚 RXD 将变为低电平。

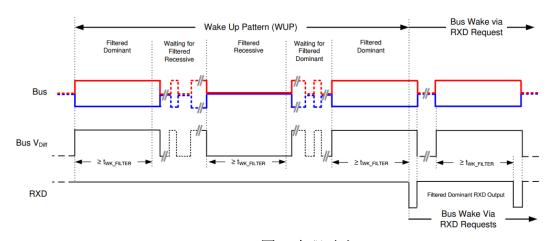


图 7 唤醒时序

4、显性超时保护功能

引脚 TXD上的显性电平持续时间超过 tTXD_DTO 时,发送器被禁止,CAN 总线进入隐性状态,以此来防止引脚 TXD 因应用故障导致的网络阻塞。TXD上升沿信号对显性超时保护进行复位。

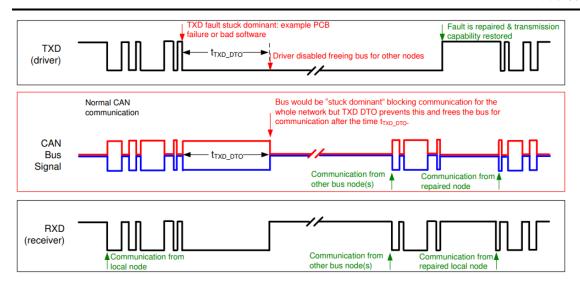
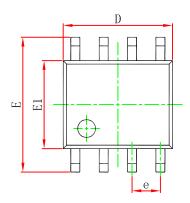


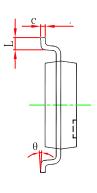
图 8 显性超时保护时序

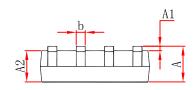
8 使用注意

1、通信线缆选型

对于大于 1Mbps 或者拓扑复杂传输距离较远的接口网络,需注意通信线缆的选型,线缆特征阻抗 120Ω (±10%),裸线单位电容小于 50pF/m,屏蔽双绞线效果更好,绞距小于 25mm。首选直线型拓扑,根据实际拓扑网络加端接电阻,根据单段拓扑网络实际通信速率、容性负载以及信号完整性确定最大节点数量。


2、节点数量


对于 5Mbps 高速率通讯场景,标准手拉手连接拓扑情况下,最多节点数量要根据实际工程中电缆材质、长度、节点负载、终端电阻分配等具体来定,5Mbps 速率下建议节点数量不超过 8 个,速率降低可以增加节点数量,实际节点数量的增加要保证信号上升、下降时间满足标准要求。



9 外形尺寸

SOP8 Outline Dimensions

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Syllibol	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
е	1.270	(BSC)	0.050	(BSC)
E	5.800	6.300	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
	0°	8°	0°	8°

10 修订历史

版本号	修订内容	修订时间
V1.0	初始版本	2024.10
	1: 增加 TID 指标	
	2: 增加 NC 版本信息	
V1.3	3: 增加线缆要求和节点数量要求	2025.09
V 1.3	4:修改外形尺寸	2025.09
	5: 修改输出电压对称性	
	6: 增加 VCC 管脚 5V 供电	