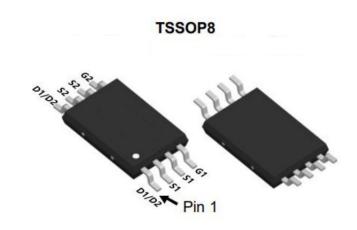


20 V N+N-Channel Enhancement Mode MOSFET

Description

The SX8205A-21 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features


 V_{DS} =20V I_D =6.5A

 $R_{DS(ON)} < 25m\Omega$ @ $V_{GS} = 10V$

Application

Lithium battery protection

Mobile phone fast charging

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	20	V
VGS	Gate-Source Voltage	±12	V
ID@TA=25℃	Continuous Drain Current1	6.5	A
ID@TA=70 ℃	Continuous Drain Current1	4.8	А
IDM	Pulsed Drain Current2	24	Α
PD@TA=25℃	Total Power Dissipation3	1.5	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$ C
TJ	TJ Operating Junction Temperature -55 to 150 Range		$^{\circ}$
Reja	Thermal Resistance Junction-ambient ¹	85	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Cumbal	Dovometer	Conditions	Min	Tim	Mov	l lmi4
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	20	22		V
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =5A		19	25	0
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =2.5V , I _D =4A		24	40	mΩ
VGS(th)	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	0.5	0.7	1.2	V
IDSS	Drain-Source Leakage Current	V _{DS} = 16V , V _{GS} =0V , T _J =25°C			1	uA
IGSS	Gate-Source Leakage Current	Vgs=±8V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =3.5A		20		s
Qg	Total Gate Charge (4.5V)			11.4		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =7A		1.6		nC
Qgd	Gate-Drain Charge			2.9		
Td(on)	Turn-On Delay Time			5		
T_r	Rise Time	V _{DD} =10V , V _{GS} =4.5V ,		32.4		
Td(off)	Turn-Off Delay Time	R _G =3.3 I _D =5A		28		ns
Tf	Fall Time			9		
Ciss	Input Capacitance			863		
Coss	Output Capacitance	V _{DS} = 15V , V _{GS} =0V , f=1MHz		87		pF
Crss	Reverse Transfer Capacitance			71		
l s	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			6	Α
Vsp	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note

- $1\,{}_{\backsim}$ The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\,\, \leqq \, 300 \text{us}$, duty cycle $\,\, \leqq \, 2\%$
- 4 . The power dissipation is limited by $175\,^\circ\!\text{C}\textsc{junction}$ temperature
- $5\sqrt{1}$ The data is theoretically the same as 1D and 1DM, in real applications, should be limited by total power dissipation.

2

Typical Characteristics

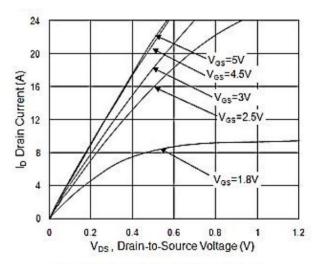


Fig.1 Typical Output Characteristics

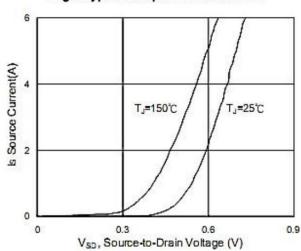


Fig.3 Forward Characteristics of Reverse

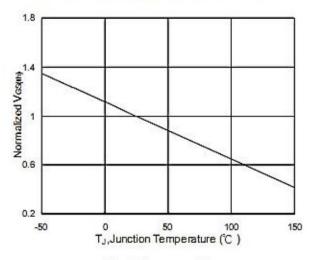


Fig.5 V_{GS(th)} vs. T_J

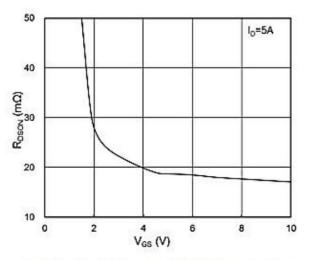


Fig.2 On-Resistance vs. Gate-Source Voltage

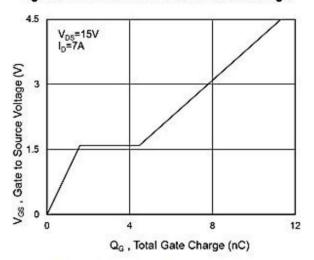


Fig.4 Gate-Charge Characteristics

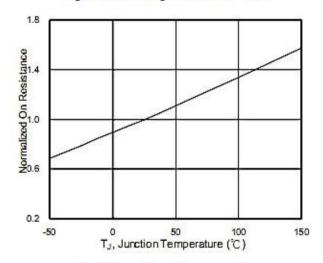
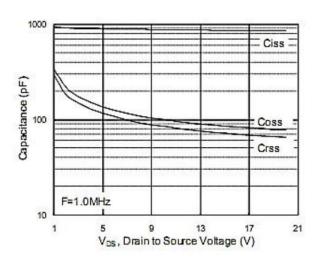



Fig.6 Normalized RDSON vs. TJ

Typical Characteristics

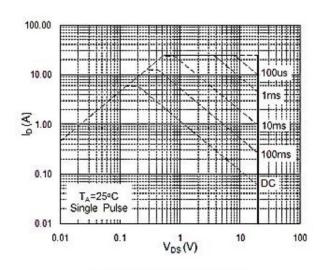


Fig.7 Capacitance

Fig.8 Safe Operating Area

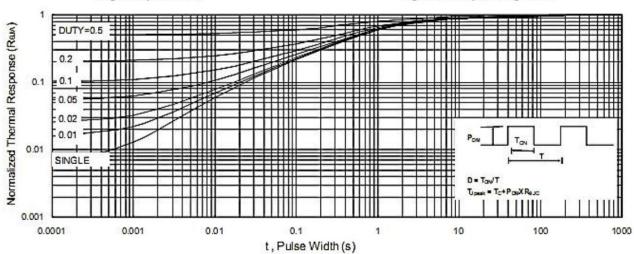


Fig.9 Normalized Maximum Transient Thermal Impedance

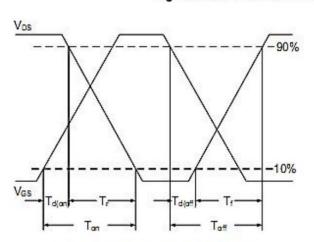


Fig.10 Switching Time Waveform

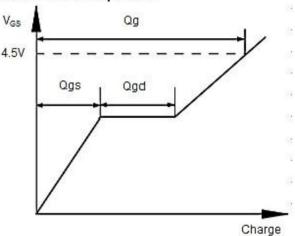
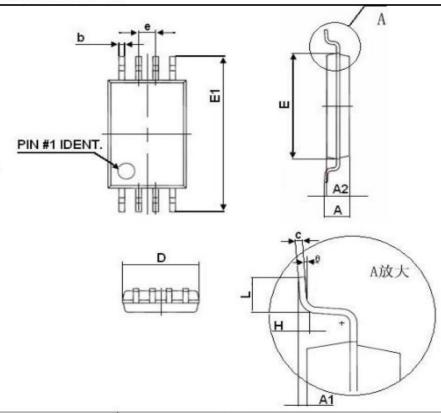



Fig.11 Gate Charge Waveform

Package Mechanical Data

Same al	Dimensions	In Millimeters
Symbol	Min	Max
D	2.900	3.100
E	4.300	4.500
b	0.190	0.300
С	0.090	0.200
E1	6.250	6.550
Α		1.100
A2	0.800	1.000
A1	0.020	0.150
е	0.65(BSC)
L	0.500	0.700
н	0.25	(TYP)
Θ	1°	7°

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	TSSOP-8		5000

5