
68V N-Channel Enhancement Mode MOSFET

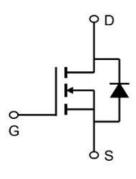
Description

The SX80N07NF uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with Hight EAS. This device is suitable for use as a Battery protectionor in other Switching application.

PDFN5*6-8L

General Features

V_{DS} = 68V I_D =80A


 $R_{DS(ON)} < 9.0 m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	68	V	
VGS	Gate-Source Voltage	e Voltage ±20		
l o@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹ 80		Α	
b@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	Drain Current, Ves @ 10V ¹ 52		
IDM	Pulsed Drain Current ²	320	Α	
EAS	Single Pulse Avalanche Energy ³	110	mJ	
IAS	Avalanche Current	22	Α	
P @Tc=25 ℃	Total Power Dissipation ⁴	103	W	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	
R⊕JA	Thermal Resistance Junction-ambient ¹	63	°C/W	
ReJC	Thermal Resistance Junction-Case ¹	1.46	°C/W	

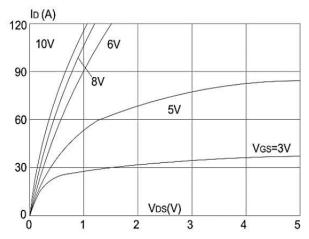
Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	68	72		V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.023		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=10A		7.5	9.0	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	2.0	3.0	4.0	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -230UA		-4.2		mV/℃
IDSS	Drain-Source Leakage Current	Vbs=68V , Vgs=0V , TJ=25℃			1	uA
	Dialii-Godice Leakage Guitelii	V _D s=68V , V _G s=0V , T _J =55℃			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
Q_g	Total Gate Charge (4.5V)			35		nC
Qgs	Gate-Source Charge	VDS =30V, ID =30A, VGS =10V		11		
Qgd	Gate-Drain Charge			9		
Td(on)	Turn-On Delay Time			15		ns
Tr	Rise Time	VDS =30V,ID =30A,		90		
Td(off)	Turn-Off Delay Time	RGEN =3 Ω , V GS =10V		45		
Tf	Fall Time			30		
Ciss	Input Capacitance			4060		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		267		pF
Crss	Reverse Transfer Capacitance			250		
IS	Continuous Source Current ^{1,5}				80	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V
trr	Reverse Recovery Time	T J =25℃		78		nS
Qrr	Reverse Recovery Charge	I F =20A,dI/dt=100A/μs		51		nC

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $2\sqrt{100}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3 \setminus The test cond \leq 300us duty cycle \leq 2%, duty cycle ition is TJ =25 $^{\circ}$ C, VDD =35V, VG =10V, R G =25 Ω , L=0.5mH, IAS =21A

2


- 4. The power dissipation is limited by 175 $\!\!\!\!^{\circ}\!\!\!\!^{\circ}$ junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics

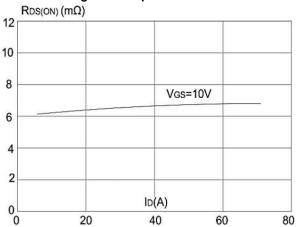
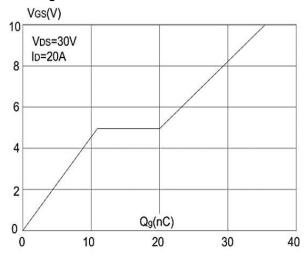
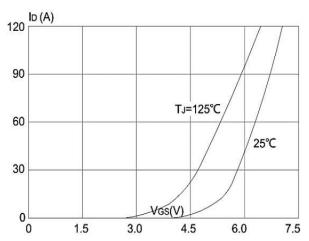




Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

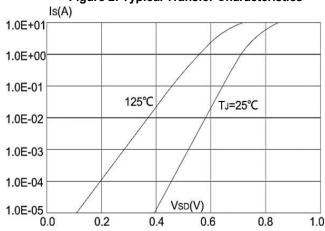


Figure 4: Body Diode Characteristics

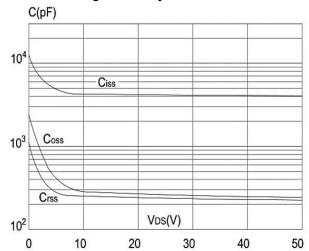


Figure 6: Capacitance Characteristics

Typical Characteristics

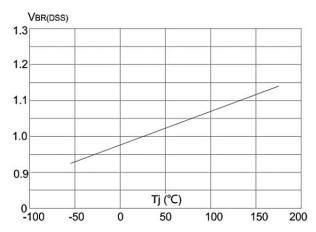


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

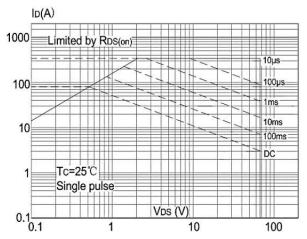


Figure 9: Maximum Safe Operating Area

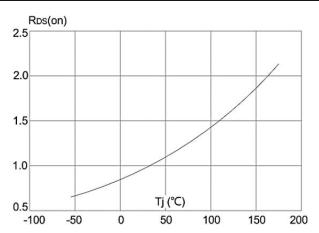


Figure 8: Normalized on Resistance vs.

Junction Temperature

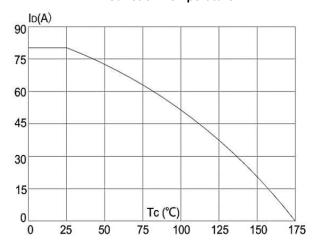


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

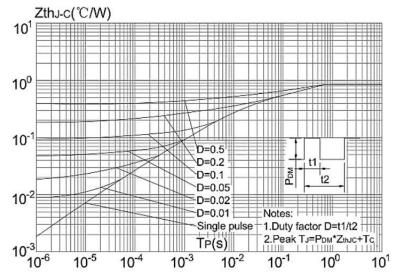
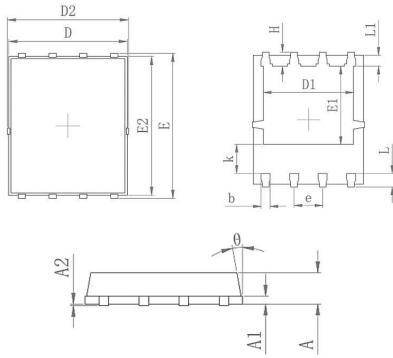



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

4

Package Mechanical Data-PDFN5X6-8L-XZT Single

	Common			
Symbol	mm			
	Mim	Max		
A	0.90	1.10		
A1	0.254	REF		
A2	0-0.05			
D	4.824	4.976		
D1	3.910	4.110		
D2	4.944	5.076		
E	5.924	6.076		
E1	3.375	3.575		
E2	5.674	5.826		
b	0.350	0.450		
е	1.270			
L	0.534	0.686		
L1	0.424	0.576		
К	1.190	1.390		
Н	0.549	0.701		
Ф	8°	12°		

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	PDFN5X6-8L		5000

5