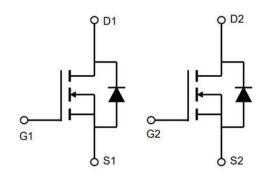


Description

The SX35H04NF uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =35A


 $R_{DS(ON)}$ < 10m Ω @ Vgs=10V

Application

Battery protection

Load switch

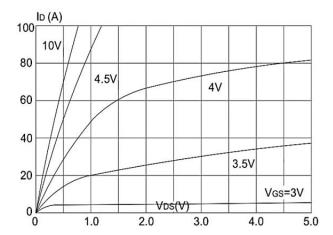
Uninterruptible power supply

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
lo@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V¹	35	Α
lo@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V¹	23	Α
Ідм	Pulsed Drain Current ²	100	А
EAS	Single Pulse Avalanche Energy ³	81	mJ
las	Avalanche Current	16	Α
P ₀@Tc=25°C	Total Power Dissipation ⁴	33.7	W
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
Reja	Thermal Resistance Junction-Ambient ¹	25	°C/W
Rejc	Thermal Resistance Junction-Case ¹	2.1	°C/W

1

Electrical Characteristics (T_J=25℃, unless otherwise noted)

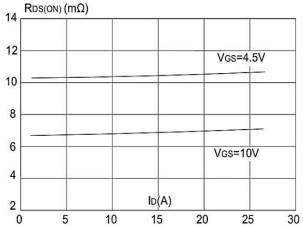
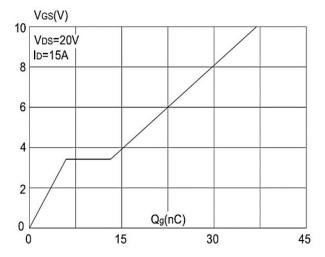
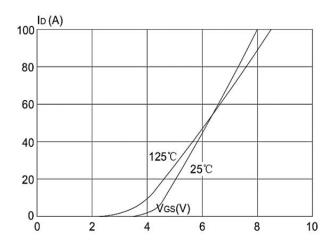

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40			V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃,lɒ=1mA		0.028		V/°C
RDS(ON)	Static Drain-Source On-Resistance	Vgs=10V , Ip=30A		8.5	10	mΩ
		Vgs=4.5V , ID=15A		10	16	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient			-6.16		mV/℃
IDSS	Drain-Source Leakage Current	Vɒs=40V , Vgs=0V , Tɹ=25℃			1	uA
		Vɒs=40V , Vgs=0V , Tɹ=55℃			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=5V , ID=30A		22		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.4	Ω
Qg	Total Gate Charge (4.5V)			37		
Qgs	Gate-Source Charge	VDS=20V , VGS=10V , ID=25A		6		nC
Qgd	Gate-Drain Charge]		7		1
Td(on)	Turn-On Delay Time			12		
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =1Ω		12		ns
Td(off)	Turn-Off Delay Time	b=25A		38		
Tf	Fall Time	-		9		1
Ciss	Input Capacitance			2400		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		192		pF
Crss	Reverse Transfer Capacitance			165		1
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			50	Α
ISM	Pulsed Source Current ^{2,5}				200	Α
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V
trr	Reverse Recovery Time			22		nS
Qrr	Reverse Recovery Charge	IF=30A , dl/dt=100A/µs ,Tյ=25℃		11		nC

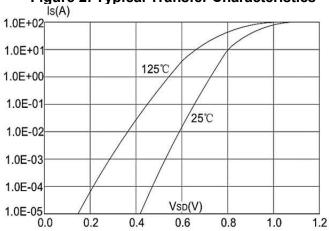
Note:

- $1\$ The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3 The EAS data shows Max. rating . The test condition is VDD=36V,VGS =10V,L=0.1mH,IAS =16A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- $5\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

Typical Characteristics

Figure1: Output Characteristics


Figure 3:On-resistance vs. Drain Curren

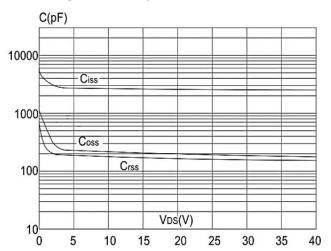

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

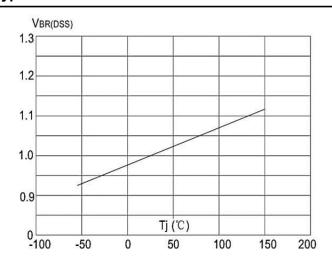


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

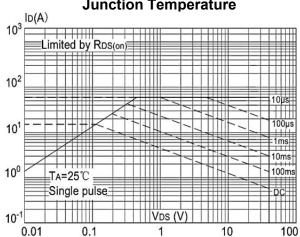


Figure 9: Maximum Safe Operating Area vs. Case Temperature

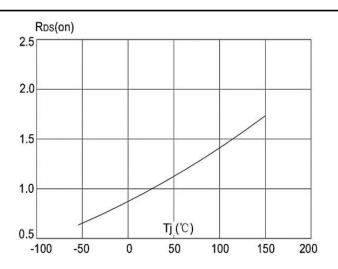
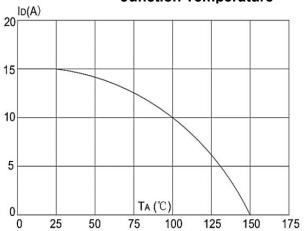



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current

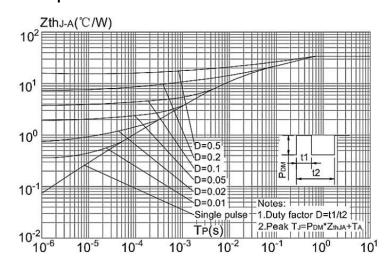
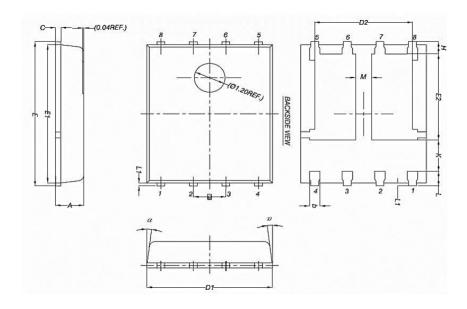



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data- PDFN5*6-8L-JQ Double

		Common		
Symbol	mm			
	Mim	Nom	Max	
Α	0.90	1.00	1.10	
b	0.33	0.41	0.51	
С	0.20	0.25	0.30	
D1	4.80	4.90	5.00	
D2	3.61	3.81	3.96	
E	5.90	6.00	6.10	
E1	5.70	3.30	3.45	
E2	3.38	3.05	3.20	
е		1.27BSC		
Н	0.41	0.51	0.61	
K	1.10			
L	0.51	0.61	0.71	
L1	0.06	0.13	0.20	
M	0.50			
а	0°		12°	

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	PDFN5*6-8L		5000

5