

Description

The SX4606C uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 20V I_D =6.5A

 $R_{DS(ON)} < 35m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -20V I_{D} = -5.8A$

 $R_{DS(ON)} < 80 m\Omega$ @ $V_{GS}=-10V$

Application

BLDC

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter N-Ch		P-Ch	Units
Vos	Drain-Source Voltage	20	20 -20	
Vgs	Gate-Source Voltage	±20	±20 ±20	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	6.5 -5.8		Α
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	3.8 -3.5		А
Ірм	Pulsed Drain Current ²	52	-40	Α
EAS	Single Pulse Avalanche Energy ³	12	18	mJ
P o@T a=25℃	Total Power Dissipation ⁴	1.5	1.5	W
Тѕтс	Storage Temperature Range	-55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150		$^{\circ}\!\mathbb{C}$
Reja	Thermal Resistance Junction-Ambient ¹	105		°C/W
Rejc	Thermal Resistance Junction-Case ¹	50		°C/W

N-Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVpss	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	20	22		V
Б	Static Prain Source On Registence?	Vgs=4.5V , ID=3A	V _{GS} =4.5V , I _D =3A 28	35		
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=2.5V , ID=2A		32	40	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	0.5	0.75	1.2	V
	Davis Course Lealing Course	V _D s=16V , V _G s=0V , T _J =25℃			1	uA
loss	Drain-Source Leakage Current	V _{DS} =16V , V _{GS} =0V , T _J =55℃			5	
Igss	Gate-Source Leakage Current	Vgs=±12V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=5V , ID=3A		10.5		S
Qg	Total Gate Charge (4.5V)			4.6		
Qgs	Gate-Source Charge	Vps=15V , Vgs=4.5V , Ip=3A		0.7		nC
Q_{gd}	Gate-Drain Charge			1.5		
Td(on)	Turn-On Delay Time			1.6		
Tr	Rise Time	V _{DD} =10V , V _{GS} =4.5V , R _G =3.3Ω		42		
$T_{d(off)}$	Turn-Off Delay Time	b=3A		14		ns
Tf	Fall Time			7		
Ciss	Input Capacitance			310		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		49		pF
Crss	Reverse Transfer Capacitance			35		
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			3.6	Α
VsD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- $3 {\scriptstyle \, {}^{\searrow}}$ The power dissipation is limited by $150 {\, {}^{\circ}\!{}^{}} Cjunction$ temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

P-Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _G s=0V , I _D =-250uA	-20	-22		V
Б	Otatia Dania Oceana On Besistance?	Vgs=-4.5V , In=-3A		55	80	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-2.5V , In=-2A		75	100	
VGS(th)	Gate Threshold Voltage	Vgs=Vds , Id =-250uA	-0.45	-0.6	-1.0	V
	Daria Course Lorder no Comment	V _{DS} =-20V , V _{GS} =0V , T _J =25℃			-1	uA
loss	Drain-Source Leakage Current	V _D s=-20V , V _G s=0V , T _J =55℃			-5	
Igss	Gate-Source Leakage Current	Vgs=±12V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		12.2		S
Q_g	Total Gate Charge (-4.5V)			10.1		
Qgs	Gate-Source Charge	VDS=-15V , VGS=-4.5V , ID=-3A		1.21		nC
Q_{gd}	Gate-Drain Charge			2.46		
Td(on)	Turn-On Delay Time			5.6		
Tr	Rise Time	V _{DD} =-10V , V _{GS} =-4.5V , R _G =3.3Ω		32.2		
$T_{d(off)}$	Turn-Off Delay Time	b=-3A		45.6		ns
Tf	Fall Time			29.2		
Ciss	Input Capacitance			677		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		82		pF
Crss	Reverse Transfer Capacitance			73		
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			-3	Α
VsD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\,\, \leqq \, 300 \text{us}$, duty cycle $\,\, \leqq \, 2\%$
- 3. The power dissipation is limited by $150^\circ\!\mathrm{C}junction$ temperature
- 4、 The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

3

N-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

N-Channel Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Gate Charge Waveform

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

P-Channel Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Gate Charge Waveform

Package Mechanical Data-SOP-8L

C l	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0.100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050	(BSC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

Recommended Minimum Pads

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000