

高精度磁性角度传感器IC

1. 产品特性

- AEC-Q100 Grade0 认证
- ISO26262 ASILB 认证
- 高精度旋转绝对角度位置检测
- 磁路设计简单
- 宽工作温度范围: -40°C~160°C
- 可选输出模式:模拟,PWM,SPI
- 可编程角度测量范围(角度可达 360°)
- 可编程线性传输特性(任意 4 点、8 点或者范围可选的 16 段、32 段等分曲线)
- 32 位可编程用户 ID
- 差分霍尔感应,抵抗杂散磁场干扰
- 丰富的片上诊断功能
- 过流、过压保护; 欠压保护
- 封装形式: SOP8, eTSSOP-16L

2. 产品应用

- 非接触式绝对角度位置检测
- 油门踏板传感器
- 方向盘转角传感器
- 换挡器档位位置检测
- 节气门和EGR阀角度位置检测
- 车身高度传感器
- 旋钮开关角度位置检测

3. 产品描述

SC69401是赛卓电子推出的基于差分霍尔磁感应原理的角度位置传感器芯片。芯片中心内置了全差分霍尔感应矩阵,通过感应上方的一对极S/N磁铁产生与之对应的正余弦位置信号。信号经前级放大器放大之后由内部的模数转换电路进行采样,芯片专有的DSP电路进行角度运算,最后通过多种接口形式输出磁铁转动的绝对位置信息(0-360度)。

SC69401提供多种输出方式:和旋转角度成比例的模拟量输出、PWM输出、4线SPI总线方式。输出曲线可以选择任意4点、8点或者范围可选的16段、32段等分曲线编程方式。

SC69401作为一颗主要面向汽车应用的传感器芯片,提供了丰富的片上诊断功能。芯片在设计开发过程中遵循 ISO 26262标准进行,符合ASIL-B等级。

SC69401适用于非接触的在轴安装位置检测,适合应用 在汽车油门踏板,电子节气门,EGR阀,换挡器,车身 高度以及方向盘转角等。

单路芯片 SC69401采用 SOP8 封装形式,双路芯片 SC69401D采用eTSSOP-16L封装,两种封装均是亚光镀锡,采用无卤绿料,满足环保要求。

图1 安装示意图

SC69401

目录

1. 产品特性 1	9. 功能框图1	3
<i>2. 产品应用</i> 1	10. 功能描述 1	3
<i>3. 产品描述</i> 1	11. 典型应用电路2	4
4. 引脚定义 3	12. 封装信息 2	7
5. 订购信息5	13. 历史版本2	9
6. 极限参数 6		
7. 静电保护 6		
8. 工作参数7		

4. 引脚定义

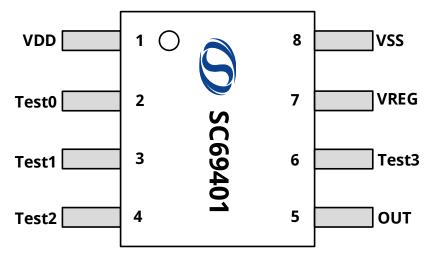


图 2 SOP8 引脚描述

引	脚	类型	†#*> ‡
名称	序号	英 堡	描述
VDD	1	电源	电源输入
Test0	2	测试/数字输出	测试引脚,接地; SPI_MISO:SPI 的主进从出数据引脚
Test1	3	测试	测试引脚,接地
Test2	4	测试/数字输入	测试引脚,接地; SPI_SCLK: SPI 时钟信号输入
OUT	5	输出/数字输入	模拟输出;PWM;SPI_CS:SPI 使能输入引脚
Test3	6	测试/数字输入	测试引脚,接地; SPI_MOSI: SPI 的主出从进数据引脚
VREG	7	电源输出	内部电源
VSS	8	地	地

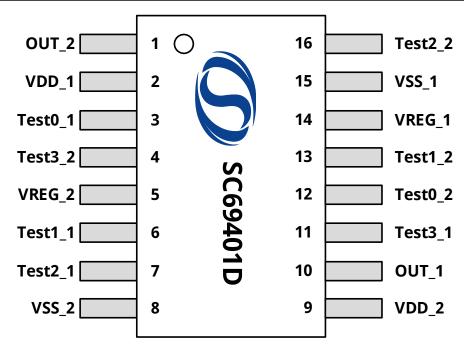
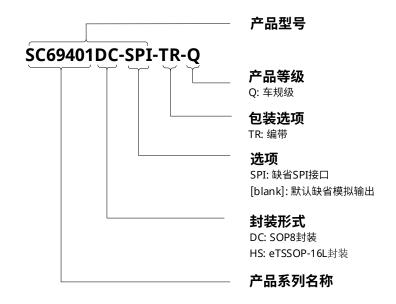


图 3 eTSSOP-16L 引脚描述


引	脚	44 mi	1#\ -
名称	序号	类型	描述
OUT_2	1	输出/数字输入	芯片 2模拟输出;PWM;SPI_CS:SPI 使能输入引脚
VDD_1	2	电源	芯片 1电源输入
Test0_0	3	测试/数字输出	芯片 1测试引脚,接地;SPI_MISO:SPI 的主进从出数据引脚
Test3_2	4	测试/ 数字输入	芯片 2测试引脚,接地;SPI_MOSI: SPI 的主出从进数据引脚
VREG_2	5	电源输出	芯片 2内部电源
Test1_1	6	测试	芯片 1测试引脚,接地
Test2_1	7	测试/数字输入	芯片 1测试引脚,接地; SPI_SCLK: SPI 时钟信号输入
VSS_2	8	地	芯片 2地
VDD_2	9	电源	芯片 2电源输入
OUT_1	10	输出/数字输入	芯片 1模拟输出;PWM;SPI_CS:SPI 使能输入引脚
Test3_1	11	测试/ 数字输入	测试引脚,接地;SPI_MOSI: SPI 的主出从进数据引脚
Test0_2	12	测试/数字输出	芯片 2测试引脚,接地;SPI_MISO:SPI 的主进从出数据引脚
Test1_2	13	测试	芯片 2测试引脚,接地
VREG_1	14	电源输出	芯片 1内部电源
VSS_1	15	地	芯片 1地
Test2_2	16	测试/数字输入	芯片 2测试引脚,接地; SPI_SCLK: SPI 时钟信号输入

5. 订购信息

产品名称	丝印	选项	等级	温度范围(℃)	封装外形	包装方式	数量
SC69401DC-TR-Q	69401	-	Q	-40 ~ 160	SOP8	编带	4000 颗/盘
SC69401DC-TR	69401	-	-	-40 ~ 160	SOP8	编带	4000 颗/盘
SC69401DC-SPI-TR-Q	69401	SPI	Q	-40 ~ 160	SOP8	编带	4000 颗/盘
SC69401HS-TR-Q	69401	-	Q	-40 ~ 160	eTSSOP-16L	编带	3000 颗/盘
SC69401HS-TR	69401	-	-	-40 ~ 160	eTSSOP-16L	编带	3000 颗/盘
SC69401HS-SPI-TR-Q	69401	SPI	Q	-40 ~ 160	eTSSOP-16L	编带	3000 颗/盘

订购信息格式

6. 极限参数

工作的自然温度范围内(除非另有说明)

符号	参数	测试条件	最小值	最大值	单位
V_{DD}	电源端耐压	t<60S	-14	28	V
V _{OUT}	电源端耐压	t<60S	-6	18	٧
I_{R}	反向输出电流		-	40	mA
T _A	工作温度		-40	160	°C
T _{STG}	储存温度		-40	160	°C
Н	磁场强度		-1	1	Т

备注:

高于此处列出的压力可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	测试条件	最小值	最大值	单位
V _{ESD_HBM}	НВМ	参照 AEC-Q100-002E HBM 标准,R=1.5kΩ,C=100pF	-4	4	kV
V _{ESD_CDM}	CDM	参照 AEC-Q100-011C CDM 标准	-750	750	V

8. 工作参数

电参数

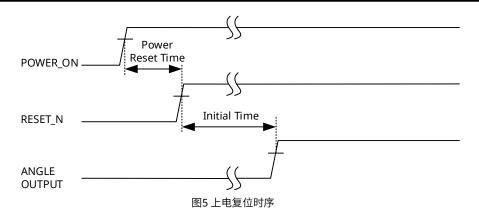
符号	参数	测试条件	最小值	典型值	最大值	单位
V_{DD}	工作电压 5V	5V 模式	4.5	5.0	5.5	٧
$V_{DD_3.3V}$	工作电压 3.3V	V _{REG} 及 V _{DD} 同时接 3.3V,UVLO_3P5EN=1	3.15	3.3	3.6	٧
I_{DD}	工作电流	单路 SOP8	-	8	10	mA
Isurge	开机冲击电流	单路 SOP8	-	-	50	mA
I_{OCP}	电流过流报警	单路 SOP8	-	25	35	mA
V_{REG}	稳压电压		3.1	3.37	3.5	٧
V_{REGOVP}	稳压电压过高检测		3.65	3.75	3.85	٧
V_{REGUVL}	稳压电压过低检测		2.7	2.8	2.9	٧
.,	A CTANA C	UVLO_3P5EN = 0	3.4	3.7	4.2	٧
$V_{\sf UVLO}$	欠压检测电压	UVLO_3P5EN = 1	2.6	2.8	3.1	٧
V _{UVLOHYS}	欠压检测迟滞		50	-	350	mV
V_{OVP}	过压保护电压		5.8	6.2	6.6	٧
V _{OVPHYST}	过压检测迟滞		100	-	600	mV
		短路至地,模拟输出	-	-	15	mA
_	+△ . L . t= □0 . t→ `→	短路至地,PWM 推挽输出	-	-	50	mA
\mathbf{I}_{short}	I _{short} 输出短路电流	短路至电源,模拟输出	-	-	15	mA
		短路至电源,PWM 推挽输出	-	5.0 5.5 3.3 3.6 8 10 - 50 25 35 3.37 3.5 3.75 3.88 2.8 2.9 3.7 4.2 2.8 3.1 - 350 6.2 6.6 - 600 - 15 - 50 - 470	50	mA
_	## h) t	上拉电阻,连接到电源	4.7	-	470	ΚΩ
R_L	模拟输出负载电阻	下拉电阻,连接到地	4.7	-	470	ΚΩ
	2000 (tAUL	上拉电阻,连接到电源	1	-	-	ΚΩ
R_{L_PWM}	PWM 输出负载电阻	下拉电阻,连接到地	1	-	-	ΚΩ
		上拉电阻 R=10k,连接到电源	-	0.5	2	%V _{DD}
Vsat_lo	####	上拉电阻 R=4.7k,连接到电源	-	2.5	3	%V _{DD}
W (1)	- 模拟输出饱和电平 	下拉电阻 R=4.7k,连接到地	96.5	97.5	-	%V _{DD}
Vsat_hi		下拉电阻 R=10k,连接到地	97.5	98	-	%V _{DD}
	ナニも 込をなる 山 中 亚	下拉电阻 R>=4.7k	-	0.5	1	%V _{DD}
Dsat_lo	主动诊断输出电平	上拉电阻 R>=4.7k	-	3.5	4	%V _{DD}

电参数(续)

BV _{SS} PD	→+	V _{ss} 开路,下拉电阻, 4.7K≤R≤47k	-	0	3	%V _{DD}
BV _{SS} PU		V _{SS} 开路,上拉电阻, 4.7K≤R≤47k	97	98	1	%V _{DD}
BV _{DD} PD	被动诊断输出电平(开路)	V _{DD} 开路,下拉电阻, 4.7K≤R≤47k	-	0	1	%V _{DD}
BV _{DD} PU		V _{DD} 开路,上拉电阻, 4.7K≤R≤47k	96.5	98	-	%V _{DD}
Clamp_lo	可编程钳位电压(1)	可编程	0	-	100	%V _{DD}
Clamp_hi		可编程	0	-	100	%V _{DD}

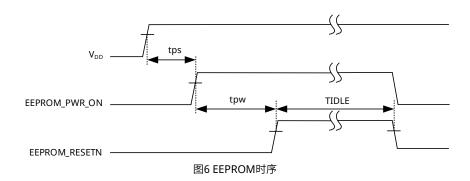
备注:

(1) SC69401 可满足如图4所示典型应用输出范围


图4典型应用输出范围

时序参数-基本时序

符号	参数	测试条件	最小值	典型值	最大值	单位
F _{CK}	主时钟频率	全温测试	7.8	8.2	8.5	MHz
ΔFск,т	主时钟频率温度偏移		-3	-	3	%F _{CK}
Tper	数据刷新频率		121	128	134	us
Ts	阶跃响应时间		-	128	-	us
T _{POR}	上电复位		-	40	-	us
T _{INIT}	初始化时间		-	16.384	-	ms
		C _{OUT} =100nF	-	60	-	V/ms
SR	 	C _{OUT} =10nF	-	80	-	V/ms
SK SK	保が刑山や妖体学	C _{OUT} =47nF	-	85	-	V/ms
		C _{OUT} =330nF	-	20	-	V/ms


高精度磁性角度传感器IC

时序参数-EEPROM 时序

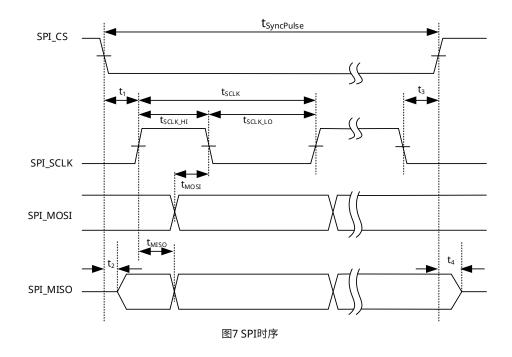
符号	参数	测试条件	最小值	典型值	最大值	单位
t _{PS}	上电复位时间		-	100	-	us
t _{PS}			-	100	-	us
TIDLE	待机时间		-	20	-	ms

时序参数-PWM 输出

符号	参数	测试条件	最小值	典型值	最大值	单位
F _{PWM}	PWM 频率	频率基础范围	125,250,500,1000,2000			Hz
F _{PWM_Init}	初始 PWM 频率精度	25°C	-	-	±2%	F_{PWM}
ΔF_{PWM}	PWM 频率温漂	PWM 频率温漂	-	1	±3%	F_{PWM}
	PWM 输出上升时间(开漏输出)	4.7nF,R _L =1KΩ 上拉	-	10	-	us
Trise_LSD		4.7nF,R _L =10KΩ 上拉	-	100	-	us
		10nF,R _L =1KΩ 上拉	-	20	-	us
		4.7nF,R _L =1KΩ 上拉	-	3	-	us
Trise_PP	PWM 输出上升时间(推挽输出)	4.7nF,R _L =10KΩ 上拉	-	3	-	us
		10nF,R _L =1KΩ 上拉	-	4	-	us

时序参数-PWM 输出 (续)

Tfall_LSD		4.7nF,R _L =1KΩ 上拉	-	2	-	us
	PWM 输出下降时间(开漏输出)	4.7nF,R _L =10KΩ 上拉	-	2	-	us
		10nF,R _L =1KΩ 上拉	-	4	-	us
		4.7nF,R _L =1KΩ 上拉	1	2	-	us
Tfall_PP	PWM 输出下降时间(推挽输出)	4.7nF,R _L =10KΩ 上拉	-	2	-	us
		10nF,R _L =1KΩ 上拉	1	4	-	us


时序参数-SPI 输出

符号	参数	测试条件	最小值	典型值	最大值	单位
V_{IH}	高电平输入电压		0.7*V _{DD}	-	V_{DD}	٧
V _{IL}	低电平输入电压		0	-	0.3*V _{DD}	٧
V_{IH}	高电平输出电压		V _{DD} -0.35		V_{DD}	٧
V _{IL}	低电平输出电压		0		V _{SS} +0.35	٧
		EE_PINFILTER = 1	450	500	-	ns
t _{SCLK}	时钟周期	EE_PINFILTER = 2	900	1000	-	ns
		EE_PINFILTER = 3	1800	2000	-	ns
		EE_PINFILTER = 1	225	-	-	ns
t _{SCLK_LO}	t _{SCLK,LO} 时钟低电平	EE_PINFILTER = 2	450	-	-	ns
		EE_PINFILTER = 3	900	-	-	ns
		EE_PINFILTER = 1	225	-	-	ns
t _{SCLK_HI}	时钟高电平	EE_PINFILTER = 2	450	-	-	ns
		EE_PINFILTER = 3	900	-	-	ns
		EE_PINFILTER = 1, C _L = 30pF	-	-	210	ns
t _{MISO}	输出数据延迟时间	EE_PINFILTER = 2, C _L = 30pF	-	-	300	ns
		EE_PINFILTER =3, C _L = 30pF	-	-	510	ns
t _{MOSI}	数据捕捉建立时间		-	30	-	ns
		EE_PINFILTER = 1	225	-	-	ns
t ₁	初始时钟延迟时间	EE_PINFILTER = 2	450	-	-	ns
		EE_PINFILTER = 3	900	-	-	ns

时序参数-SPI 输出 (续)

		EE_PINFILTER = 1	-	90	120	ns
t ₂	初始输出数据建立时间	EE_PINFILTER = 2	-	180	210	ns
		EE_PINFILTER = 3	-	370	420	ns
t ₃	通信完成使能保持时间		225	-	-	ns
	t ₄ 通信完成输出保持时间	EE_PINFILTER = 1	-	90	120	ns
t ₄		EE_PINFILTER = 2	-	180	210	ns
		EE_PINFILTER = 3	-	370	420	ns
		EE_PINFILTER = 1	520	-	10000	ns
t _{SyncPulse} 同步脉冲周期	同步脉冲周期	EE_PINFILTER = 2	610	-	10000	ns
		EE_PINFILTER = 3	820	-	10000	ns

精度参数-模拟输出

符号	参数	测试条件	最小值	典型值	最大值	单位
R _{ADC}	ADC 分辨率		-	15	-	bits
R _{DAC}	模拟输出分辨率		-	12	-	bits
INL	DAC 积分非线性误差		-	5	1	LSB
DNL	DAC 差分非线性误差		0.05	1	3	LSB
ΔEang	角度偏移误差		-1.2	-	1.2	Deg
ΔE_L	非线性度误差		-1	-	1	Deg
ΔEtemp	角度温度漂移误差		-0.5	-	0.5	Deg
ΔEratio	比例输出错误	4.5V≤V _{DD} ≤5.5V	-0.05	0	0.5	%V _{DD}
N_{pk-pk}	输出极噪声		-	0.18	0.27	Deg

精度参数-PWM 输出

符号	参数	测试条件	最小值	典型值	最大值	单位
RSP	PWM 分辨率		-	12	-	bits
		125Hz,4.7nF,R _L =1Kohm, 电阻上拉	-	±0.003	±0.016	%DC
		250Hz,4.7nF,R _L =1Kohm, 电阻上拉	-	±0.005	±0.02	%DC
Joc	PWM % 占空比抖动(开漏输出)	500Hz,4.7nF,R _L =1Kohm,电阻上拉	1	±0.009	±0.035	%DC
		1000Hz,4.7nF,R∟=1Kohm,电阻上拉	-	±0.003	±0.016	%DC
		2000Hz,4.7nF,R∟=1Kohm,电阻上拉	-	±0.005	±0.02	%DC
		125Hz,4.7nF,R _L =1Kohm, 电阻上拉	-	±0.003	±0.016	%DC
		250Hz,4.7nF,R _L =1Kohm, 电阻上拉	1	±0.005	±0.02	%DC
J _{DC}	PWM % 占空比抖动(推挽输出)	500Hz,4.7nF,R _L =1Kohm, 电阻上拉	-	±0.009	±0.035	%DC
		1000Hz,4.7nF,R∟=1Kohm,电阻上拉	-	±0.003	±0.016	%DC
		2000Hz,4.7nF,R _L =1Kohm,电阻上拉	1	±0.005	±0.02	%DC
J _{PWM}	PWM 频率抖动(开漏输出)	125Hz-2000Hz,4.7nF,R _L =1Kohm,电阻上拉		±0.04	±0.15	Hz
J _{PWM}	PWM 频率抖动(推挽输出)	125Hz-2000Hz,4.7nF,R _L =1Kohm,电阻上拉		±0.04	±0.15	Hz

磁参数

符号	参数	测试条件	最小值	典型值	最大值	单位
H _{EXT}	磁场强度		10	-	120	mT
D _{mag}	磁铁直径		1	6	1	mm
H _{mag}	磁铁厚度		-	2.5	-	mm
AG	磁铁与芯片间隙		0.5	-	3	mm
	磁铁材料		-	NdFeB 35	-	-

9. 功能框图

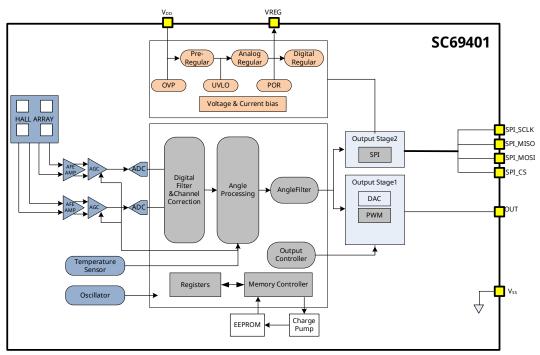


图8 功能框图

10. 功能描述

用户可编程参数

参数	描述	缺省	位数
OUT mode	输出模式	0	2
PWM POL	PWM 极性	0	1
PWMT	PWM 频率	0	3
OUT_CONFIG	PWM 输出配置	0	2
GAIN_G	模拟运放第一级增益设置	0	2
AGC	模拟运放第二级的自动增益控制	1	1
GAIN_F	模拟运放第二级增益设置	1	5
SEMI_ID1	赛卓出厂 ID	xxx	8
SEMI_ID2	赛卓出厂 ID	xxx	8
SEMI_ID3	赛卓出厂 ID	xxx	8
SEMI_ID4	赛卓出厂 ID	xxx	8
USER_ID1	用户 ID	0	8
USER_ID2	用户 ID	0	8
USER_ID3	用户 ID	0	8

SC69401

高精度磁性角度传感器IC

		ı	
USER_ID4	用户 ID	0	8
EEPROM_LOCK_CODE	EEPROM_LOCK 位有效判断码	0	7
EEPROM_LOCK	EEPROM 锁定位	0	1
DIAG_EN	诊断使能位	1	1
DIAG_MASK	诊断屏蔽寄存器	128	8
GAIN_THRESHOLD_LOW	模拟运放第二级增益低阈值	0	5
GAIN_THRESHOLD_HIGH	模拟运放第二级增益高阈值	31	5
FIELDTHOLD_LOW	场强低阈值	0	8
FIELDTHOLD_HIGH	场强高阈值	255	8
TEMPTHRESHOLD_LOW	低温阈值	0	7
TEMPTHRESHOLD_HIGH	高温阈值	127	7
DIAG_DEBOUNCE	诊断去抖动时间	0	3
CLAMP_HIGH	输出高钳位	65535	16
CLAMP_LOW	输出低钳位	0	16
DP	断点/零点	0	16
CW	旋转方向	0	1
WORK_RANGE_GAIN	16 点/32 点校准工作角度范围(度)	360	16
LNR_POINTS	校准点选择	3	2
LNR_A_X		0	16
LNR_B_X	A Literatury v to Aktil (Arich)	0	16
LNR_C_X	── 4 点校准, X 轴坐标(角度)	0	16
LNR_D_X		0	16
LNR_A_Y		0	16
LNR_B_Y	A Eticyt V to Akt = Co.V. X	0	16
LNR_C_Y	- 4 点校准,Y轴坐标(%V _{DD})	0	16
LNR_D_Y		0	16
LNR_A_S		0	16
LNR_B_S	A Lititly of Friedrich	0	16
LNR_C_S	- 4 点校准,各段斜率	0	16
LNR_D_S		0	16
LNR4_S0	4 点校准,初始斜率	0	16
LNR4_Y5	4 点校准,终点 Y 坐标	0	16
LNR_Y0	4 点,16 点/32 点校准初始点 Y 坐标	0	16
LNR9_Yn	8 点校准,Y 轴坐标(n=0~8)	0	9x16

高精度磁性角度传感器IC

LNR9_Xn	8 点校准,X 轴坐标(n=0~8)	0	9x16
LNR17_Yn	16 点校准,Y 轴坐标(n=0~15)	0	17x16
LNR_DELTAYn	32 点校准,Y 轴坐标(偏移量%)(n=0~31)	0	32x8
LNR_DELTA_Y_EXPAND	32 点校准,Y 轴坐标偏差范围设置	3	2

输出模式

SC69401 提供三种输出模式:比例模拟输出,PWM 输出,SPI 总线输出。PWM 支持 PMOS 或 NMOS 漏极开路输出及推挽输出,SPI 仅支持推挽输出。

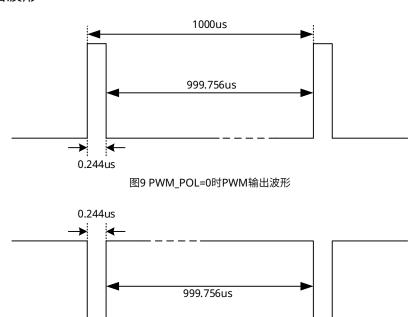
模拟输出模式

参数	数值	描述
	0	模拟输出
0.17	1	PWM 输出
OUT mode 【1:0】	2	保留
	3	SPI 输出

PWM 输出模式-输出极性设置

参数	数值	描述
PWM POL	0	高电平有效
	1	低电平有效

PWM 输出模式-输出频率设置


参数	数值	描述
	000	125
	001	250
PWMMT [2:0]	010	500
	011	1000
	其他	2000

PWM 输出模式-输出模式设置

参数	数值	描述
	0	数字输出 NMOS Open Drain
	1	数字输出 PMOS Open Drain
OUT_CONFIG [2:0]	2	数字推挽输出
	3	数字高阻态输出

PWM 输出模式-输出波形

1000us 图10 PWM_POL=1时PWM输出波形

四线 SPI 协议输出

SC69401 SPI 做为全双工串行通信,在一次主从通信中主机可以同时发送命令和接收上一次命令的结果。SC69401 做为从机,由片选信号 SPI_CS 控制。SPI_CS 被设置为低电平时,SPI 通信被激活;SPI_CS 被设置为高电平时,SPI 通信结束。SPI_SCLK 作为 SPI 通信的时钟,由上位机发给 SC69401。MISO 和 MOSI 的信号在时钟的上升沿改变,在时钟的下降沿被捕捉。

命令	数据传输方向	Byte 0	Byte 1	Byte 2	Byte 3
读 16 位角度值	主到从	0x9C	0x00	0x00	CRC8
以10 位用反阻	从到主	0x9C	AngleH	AngleL	CRC8
读温度和	主到从	0xBC	0x00	0x00	CRC8
磁场强度值	场强度值 从到主 0xBC Temp		FiledStrength	CRC8	
写寄存器值	主到从	0xCC	RegAddr	RegValue	CRC8
与句件格阻	从到主	0xCC	RegAddr	RegValue	CRC8
\+ c\+ d\ (\frac{1}{2} \)	主到从	0xC4	RegAddr	0x00	CRC8
读寄存器值	从到主	0XC4	RegValue	(RegAddr+1) Value	CRC8

传感器前端设置

第一级增益设定

参数	数值	描述
	0	2.5
GAIN_G【2:0】	1	5
GAIN_G [2.0]	2	10
	3	10

第二级增益设定

AGC 使能用于设置第二级增益的自动增益控制使能。AGC 设置为 1,使能自动增益控制;设置为 0,关闭自动增益控制。AGC 控制位使能关闭,则通过寄存器直接设置第二级增益。

参数	数值	描述
A.C.C.	0	关闭自动增益控制
AGC	1	使能自动增益控制
	0	1
	1	1.1
	2	1.21
GAIN_F 【 4:0】		
	29	15.86
	30	17.4
	31	20

可追踪信息

在出厂时,每个器件包含赛卓出厂 ID 和用户 ID 用于回溯追踪。

参数	数值
SEMI_ID1 【7:0】	0-255
SEMI_ID2【7:0】	0-255
SEMI_ID3 【7:0】	0-255
SEMI_ID4【7:0】	0-255
USER_ID1【7:0】	0-255
USER_ID2【7:0】	0-255
USER_ID3【7:0】	0-255
USER_ID4【7:0】	0-255

EEPROM 写保护

参数	数值	描述
EEPROM_LOCK_	0x3A	EEPROM_LOCK 位有效
CODE [6:0]	其他值	EEPROM_LOCK 位无效
EEDDOM LOCK	0	EEPROM 可以读写,擦除
EEPROM_LOCK	1	EEPROM 只读

诊断

诊断使能

参数	数值	描述	
DIAC EN	0	使能诊断	
DIAG_EN	1	关闭诊断	

诊断屏蔽寄存器

对应屏蔽位置 0,该故障不会触发诊断;对应屏蔽器位置 1,该故障会触发诊断。

ВІТ7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
CRC 校验	GAINF	由法沙斯	数字电	CORDIC	场强	ADC	温度
错误	溢出	电流诊断	压故障	溢出	溢出	溢出	溢出

诊断阈值

参数	数值	描述
GAIN_THRESHOLD_LOW 【4:0】	0-31	第二级模拟运放增益低阈值
GAIN_THRESHOLD_HIGH 【4:0】	0-31	第二级模拟运放增益高阈值
TEMPTHRESHOLD_LOW [6:0]	0-127	低温阈值
TEMPTHRESHOLD_HIGH [6:0]	0-127	高温阈值
FIELDTHOLD_LOW [7:0]	0-255	场强低阈值
FIELDTHOLD_HIGH 【7:0】	0-255	场强高阈值

诊断去抖动时间设置

参数	数值	STEP_UP TIME(ms)	STEP_DOWN TIME(ms)
	0	20	20
	1	20	30
	2	20	40
DIAG_DEBOUNCE	3	40	40
[2:0]	4	60	80
	5	80	100
	6	100	120
	7	120	140

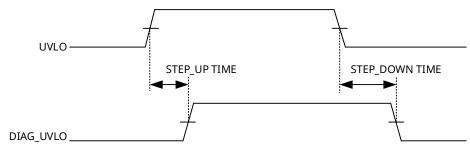


图11 诊断去抖动时序

输出参数设置

断点/零点-DP

SC69401 的断点和零点是同一个点,该点可以编程在圆周上任一点,所有的角度都是以断点或零点为基准的。DP 是 0 度和 360 度的跳变点,对于小于 360 度行程的应用,DP 不要和工作行程起点设置在同一个位置,必须设置在工作行程外。

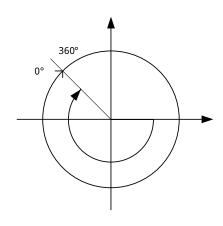


图12 DP点示意图

高精度磁性角度传感器IC

参数	数值	描述
DP	0-360	断点/零点(度)

旋转方向

CW 参数定义了磁铁的旋转方向。逆时针定义按 1-4-5-8 引脚顺序(SOP-8 封装)或 1-8-9-16 引脚顺序(eTSSOP-16L 封装)旋转;顺时针定义为相反的方向,按 8-5-4-1 引脚顺序(SOP-8 封装)或 16-9-8-1 引脚顺序(eTSSOP-16L 封装)旋转。

参数	数值	描述
CM	0	逆时针旋转
CW	1	顺时针旋转

输出钳位设置

输出钳位设置用于限制输出电压范围。CLAMP_LOW 设定输出电压最小值,CLAMP_HIGH 设定输出电压最大值。 这两个参数对于 4 点、8 点、16 点和 32 点矫正模式都起作用。

参数	数值	描述
CLAMP_LOW	0-100	低钳位
CLAMP_HIGH	0-100	高钳位

4 点校准模式

SC69401 允许用户用 4 点校准模式将输出曲线通过 4 点分为最多 5 段,允许减少校准点数至 2 点或 3 点。4 个标定点的 Y 坐标(-100%~100%)和 X 坐标(0°~360°)和 5 段斜率(LNR_S0,LNR_S1,LNR_S2,LNR_S3,LNR_S4)完全由用户设定。计算斜率,需要曲线的 0 度起始和 360 度终止两个端点来计算 LNR_S0 和 LNR_D_S。

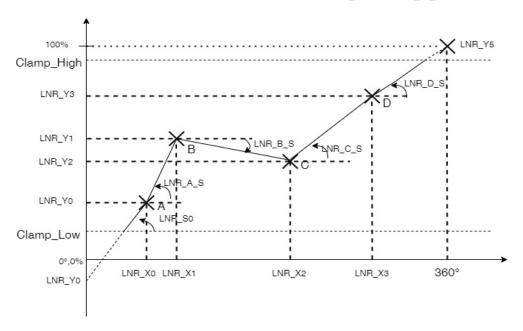
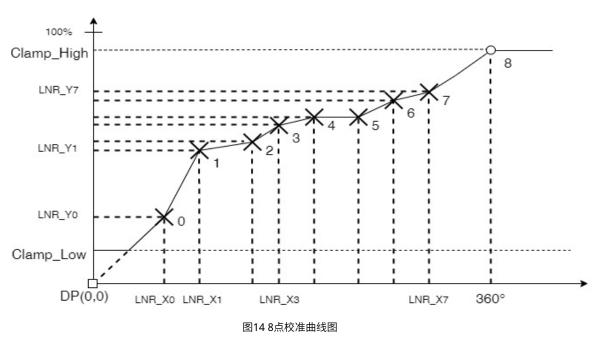



图13 4点校准曲线图

8点任意点校准模式

SC69401 允许用户通过自定义任意 8 个标定点的 X 坐标(0°~360°)和 Y 坐标(0%~100%)来编程用户需要的输出曲线。但是斜率不可设置,只能由相邻两点计算得出。此外还需要默认的固定标定点[0°,0%]作为起始点。

16 点校准模式

16 点校准模式,只允许设定坐标点的 Y 轴值。X 轴坐标由 W 值定义,在 WORK_RANGE 范围内均分为 16 段。Y 点坐标允许范围为钳位电压的-50%~+150%,可使得钳位电压在某一段的之间(如下图所示)。但是输出仍然是钳位电压。

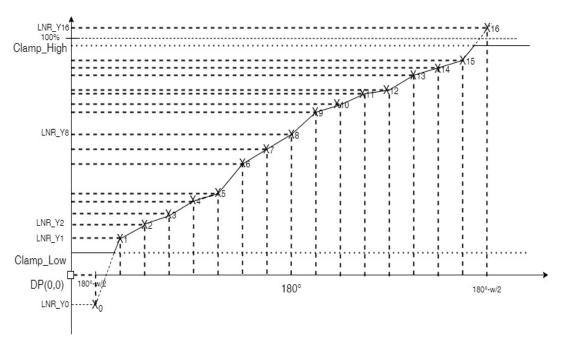
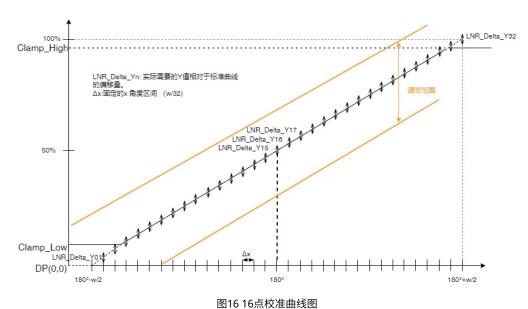



图15 16点校准曲线图

32 点校准模式

由 WorkRange 定义工作区间 W,以 180°为中心均分为 32 段。Y 轴坐标仅由 8bit 数据构成,因此不是坐标绝对值,而是坐标增量。以两个端点分别为(180°-w/2,0%),(180°+w/2,100%)确定一条理想曲线, ΔY 则是横轴坐标 X 对应 Y 的微调值。

32 点校准, Y 轴坐标偏差范围设置

参数		描述
	0	误差范围±3.125%
IND DELTA V EVDAND [1:0]	1	误差范围±6.25%
LNR_DELTA_Y_EXPAND [1:0]	2	误差范围±12.5%
	3	误差范围±25%

角度范围选择

$$w = \frac{WORK_RANGE_GAIN \times 360^{\circ}}{0XFFFF}$$

角度范围
$$\theta_{min} = \frac{360^{\circ} - w}{2}$$
 $\theta_{max} = \frac{360^{\circ} + w}{2}$

 θ min 表示输出 0%时的角度, θ max 表示 输出 100%时的角度。为使矫正输出正常,角度范围需要设置为大于 16 的整数倍以上。

高精度磁性角度传感器IC

角度范围设置举例:

WORK_RANGE_GAIN	W(°)	Θ _{min} (°)	Θ _{max} (°)	∆X, 16pts(°)	∆X, 32pts(°)
0x1000	22.50034	168.7498	191.2502	1.406271	0.703136
0x1100	23.90661	168.0467	191.9533	1.494163	0.747082
0x1200	25.31289	167.3436	192.6564	1.582055	0.791028
0x1300	26.71916	166.6404	193.3596	1.669947	0.834974
0x2000	45.00069	157.4997	202.5003	2.812543	1.406271
0x2100	46.40696	156.7965	203.2035	2.900435	1.450217
0x2200	47.81323	156.0934	203.9066	2.988327	1.494163
0x2300	49.2195	155.3902	204.6098	3.076219	1.538109
0x3000	67.50103	146.2495	213.7505	4.218814	2.109407
0x3100	68.9073	145.5463	214.4537	4.306706	2.153353
0x3200	70.31357	144.8432	215.1568	4.394598	2.197299
0x3300	71.71984	144.1401	215.8599	4.48249	2.241245
0x4000	90.00137	134.9993	225.0007	5.625086	2.812543
0x4100	91.40764	134.2962	225.7038	5.712978	2.856489
0x4200	92.81392	133.593	226.407	5.80087	2.900435
0x4300	94.22019	132.8899	227.1101	5.888762	2.944381
0xFA00	351.5679	4.216068	355.7839	21.97299	10.9865
0xFB00	352.9741	3.512932	356.4871	22.06088	11.03044
0xFC00	354.3804	2.809796	357.1902	22.14878	11.07439
0xFD00	355.7867	2.106661	357.8933	22.23667	11.11833
0xFE00	357.193	1.403525	358.5965	22.32456	11.16228
0xFF00	358.5992	0.700389	359.2996	22.41245	11.20623
0xFFFF	360	0	360	22.5	11.25

11. 典型应用电路

模拟/PWM SOP8 封装应用电路

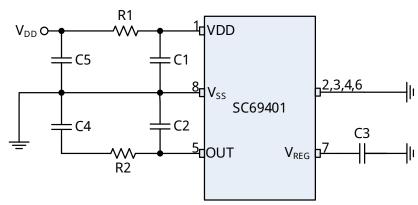


图17 模拟/PWM SOP8封装参考电路图

模拟输出参考值

元件	最小值	典型值	最大值	描述
R1	-	0Ω	10Ω	减小 EMC 影响,增大测量误差
R2	-	0Ω	51Ω	减小 EMC 影响
C1	47nF	100nF	-	靠近引脚摆放
C2	47nF	100nF	-	靠近引脚摆放
C3	47nF	100nF	220nF	靠近引脚摆放
C4	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放
C5	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放

数字输出(PWM)参考值

元件	最小值	典型值	最大值	描述
R1	-	0Ω	10Ω	减小 EMC 影响,影响输出高电平
R2	-	0Ω	51Ω	减小 EMC 影响,影响输出高低电平
C1	47nF	100nF	-	靠近引脚摆放
C2	2.2nF	4.7nF	22nF	靠近引脚摆放
C3	47nF	100nF	220nF	靠近引脚摆放
C4	-	-	10nF	减小 EMC 影响,靠近连接器端摆放
C5	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放

模拟/PWM eTSSOP-16L 封装应用电路

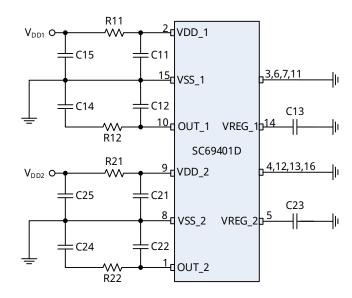


图18 模拟/PWM eTSSOP-16L封装参考电路图

模拟输出参考值

元件	最小值	典型值	最大值	描述
R11, R21	-	0Ω	10Ω	减小 EMC 影响,增大测量误差
R12, R22	-	0Ω	51Ω	减小 EMC 影响,增大测量误差
C11, C21	47nF	100nF	-	靠近引脚摆放
C12, C22	47nF	100nF	-	靠近引脚摆放
C13, C23	47nF	100nF	220nF	靠近引脚摆放
C14, C24	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放
C15, C25	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放

数字输出(PWM)参考值

元件	最小值	典型值	最大值	描述
R11, R21	-	0Ω	10Ω	减小 EMC 影响,影响输出高电平
R12, R22	-	0Ω	51Ω	减小 EMC 影响,影响输出高低电平
C11, C21	47nF	100nF	-	靠近引脚摆放
C12, C22	2.2nF	4.7nF	22nF	靠近引脚摆放
C13, C23	47nF	100nF	220nF	靠近引脚摆放
C14, C24	-	-	10nF	减小 EMC 影响,靠近连接器端摆放
C15, C25	-	1nF	10nF	减小 EMC 影响,靠近连接器端摆放

SPI SOP8 封装应用电路

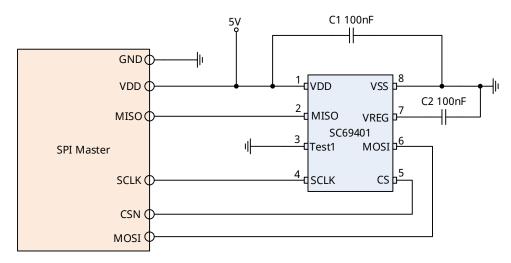


图19 SPI输出SPO8封装参考电路图

SPI eTSSOP-16L 封装应用电路

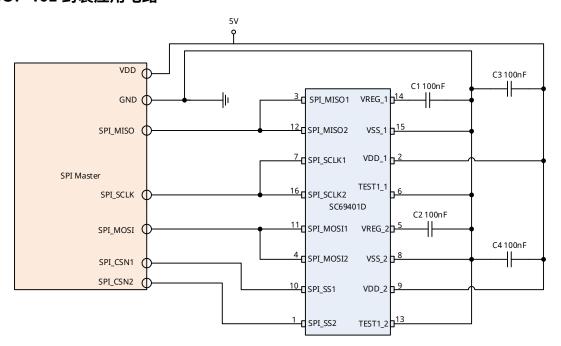


图20 SPI输出eTSSOP-16L封装参考电路图

12. 封装信息

SOP8

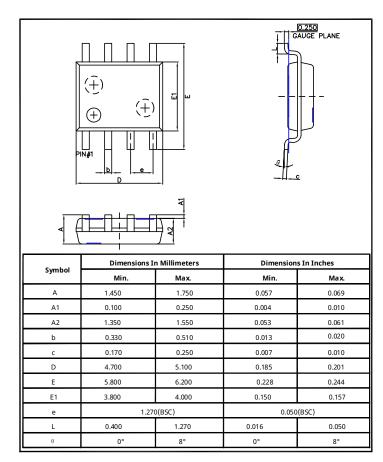


图 21 SOP8 封装尺寸

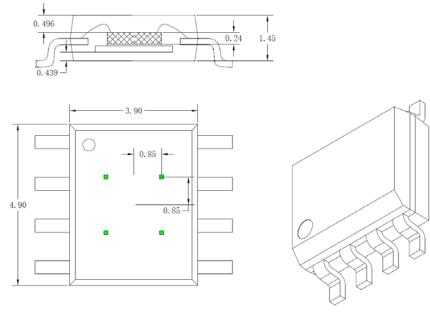


图 22 SOP8 封装霍尔盘位置

eTSSOP-16L

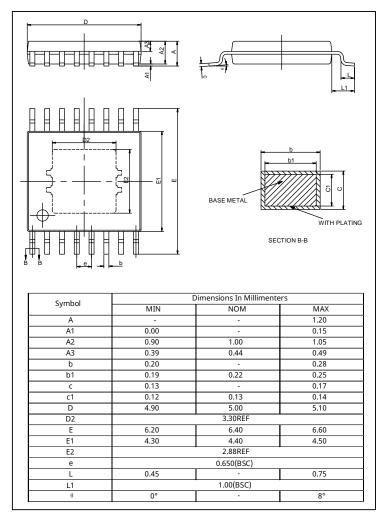


图 23 eTSSOP-16L 封装尺寸

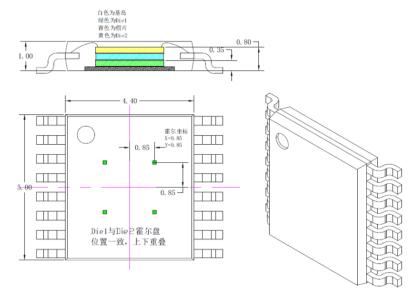


图 24 eTSSOP-16L 封装霍尔盘位置

13. 历史版本

版本号	日期	描述		
Rev.E1.0	2023-07-23	初始版本		
Rev.A1.0	2024-02-20	正式版本发布		
Rev.A1.1	2024-06-21	1、SOP8 包装数量更新为 4000 颗/卷 2、改变主动诊断输出电压限值 3、诊断屏蔽寄存器 BIT1 补加 ADC 溢出屏蔽 4、4 点标定 Y 轴坐标数值最小更新为-100% 5、更新建议原理图的电容电阻匹配值 6、更新封装的内部尺寸标注		
Rev.A1.2	2025-02-24	更新订购信息		