

60V N-Channel Enhancement Mode MOSFET

Description

The SX20N06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 10V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 20A$

 $R_{DS(ON)} < 10m\Omega @ V_{GS}=10V$

Application

Battery protection

Load switch

synchronous rectification

Absolute Maximum Ratings (Tc=25[°]C unless otherwise noted)

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage	60	V
VGS	Gate-Source Voltage	±20	V
lo@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	20	Α
b@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹	nuous Drain Current, V _{GS} @ 10V¹ 13	
IDM	Pulsed Drain Current ²	80	Α
EAS	Single Pulse Avalanche Energy ³	140	mJ
P @Tc=25 ℃	Total Power Dissipation ⁴	116	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
R₀JA	Thermal Resistance Junction-ambient ¹	46	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	0.85	°C/W

1

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , ID=250uA	68	72		V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.023		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=10A		7.8	10	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , lp =250uA	2.0	3.0	4.0	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VG3-VD3 , ID -230UA		-4.2		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA
1000	Dialii-Godice Leakage Guireit	V _D s=24V , V _G s=0V , T _J =55℃			5	UA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=5V , Ip=10A		5.5		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω
Qg	Total Gate Charge (4.5V)			35		nC
Qgs	Gate-Source Charge	VDS =30V, ID =20A, VGS =10V		11		
Qgd	Gate-Drain Charge	700 100		9		
Td(on)	Turn-On Delay Time			15		ns
Tr	Rise Time	V DS =30V,I D =20A,		94		
Td(off)	Turn-Off Delay Time	RGEN = 6Ω , V GS = $10V$		46		
Tf	Fall Time			32		
Ciss	Input Capacitance			4062		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		261		pF
Crss	Reverse Transfer Capacitance			231		
IS	Continuous Source Current ^{1,5}	V V 0V 5			80	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V
trr	Reverse Recovery Time	T J =25℃		78		nS

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175 $\!\!\!\!\!^{\circ}\!\!\!\!^{\circ}$ junction temperature
- $4\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs.

Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data-SOP-8L

Symbol	Dimensions I	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000

5