

Description

The SX4959A uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -30V I_{D} = -18A$

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =-10V

Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	-30	V	
VGS	Gate-Source Voltage	±20	V	
ID@TA=25°C	Continuous Drain Current, V _{GS} @ -10V ¹	-18	Α	
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ -10V¹	-11	Α	
IDM	Pulsed Drain Current ²	-48	Α	
EAS	Single Pulse Avalanche Energy ³	168	mJ	
Pb@Ta=25°C	Total Power Dissipation ⁴	1.47	W	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$ C	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$ C	
R₀JA	Thermal Resistance Junction-Ambient ¹	85	°C/W	
R₀JC	Thermal Resistance Junction-Case ¹	4.5	°C/W	

1

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, ID= -250µA	-30	-32.5	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μA
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250µA	-1.2	-1.5	-2.5	V
DDC()	Static Drain-Source on-Resistance	Vgs= -10V, ID= -10A	-	12	18	mΩ
RDS(on)	note3	Vgs= -4.5V, ID= -5A	-	18	25	
Ciss	Input Capacitance)/ 04)/)/ 40)/	-	2130	-	pF
Coss	Output Capacitance	V _{DS} = -24V, V _{GS} =10V, f=1.0MHz	-	280	-	pF
Crss	Reverse Transfer Capacitance	I-1.UIVIDZ	_	252	_	pF
Qg	Total Gate Charge	V _{DS} = -24V, I _D = -1A, V _{GS} = -10V	_	22	_	nC
Qgs	Gate-Source Charge		-	4	-	nC
Qgd	Gate-Drain("Miller") Charge		_	5.8	_	nC
td(on)	Turn-on Delay Time		-	9	-	ns
tr	Turn-on Rise Time	V _{DD} = -24V, I _D = -1A,	_	13	-	ns
td(off)	Turn-off Delay Time	Vgs= -10V, Rgen=7.0Ω	-	48	-	ns
tf	Turn-off Fall Time		-	20	-	ns
IS	Maximum Continuous Drain to Source Di	de Forward Current		-29.5	Α	
ISM	Maximum Pulsed Drain to Source	Diode Forward Current	-	-	-44	Α
VSD	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S = -1A	-	-0.74	-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $2\mathrel{\diagdown}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3 . The power dissipation is limited by $175\,^\circ\!\!\mathrm{C}\,junction$ temperature
- 4 . The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics Figure

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

3

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

4

www.sxsemi.com

Package Mechanical Data-SOP-8L

Cl 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

Fackage marking and Ordering information					
Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOP-8L		3000		

5