

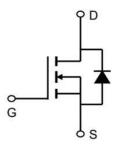
#### **60V N-Channel Enhancement Mode MOSFET**

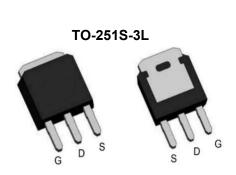
#### **Description**

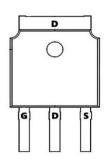
The SX30N06Y uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

#### **General Features**

V<sub>DS</sub> = 60V I<sub>D</sub> =30A


 $R_{DS(ON)}$  <36m $\Omega$  @ Vgs=10V


#### **Application**


LED lamp

Load switch

Uninterruptible power supply







Absolute Maximum Ratings@T<sub>i</sub>=25°C(unless otherwise specified)

| Symbol             | Parameter                                                    | Max.        | Units |
|--------------------|--------------------------------------------------------------|-------------|-------|
| VDSS               | Drain-Source Voltage                                         | 60          | V     |
| VGSS               | Gate-Source Voltage                                          | ±20         | V     |
| lo@Tc=25℃          | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 30          | А     |
| <b>l</b> b@Tc=100℃ | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 13          | Α     |
| IDM                | Pulsed Drain Current                                         | 74          | А     |
| IAS                | Avalanche Current                                            | 13          | А     |
| EAS                | Single Pulsed Avalanche Energy                               | 22          | mJ    |
| P <b></b> @Tc=25°C | Power Dissipation                                            | 31.3        | W     |
| TJ, TSTG           | Operating and Storage Temperature Range                      | -55 to +175 | °C    |
| R₀JA               | Thermal Resistance Junction-Ambient <sup>1</sup>             | 62          | °C/W  |
| ReJC               | Thermal Resistance Junction-Case <sup>1</sup>                | 4           | °C/W  |



## 60V N-Channel Enhancement Mode MOSFET

#### Electrical Characteristics (T<sub>J</sub>=25 °C, unless otherwise noted)

| Symbol          | Parameter                                      | Conditions                                                         | Min. | Тур.  | Max. | Unit |
|-----------------|------------------------------------------------|--------------------------------------------------------------------|------|-------|------|------|
| BVDSS           | Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V , I <sub>D</sub> =250uA                        | 60   | 65    |      | V    |
| △BVDSS/△TJ      | BVDSS Temperature Coefficient                  | Reference to 25℃, I <sub>D</sub> =1mA                              |      | 0.044 |      | V/°C |
| RDS(ON)         | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>G</sub> s=10V , I <sub>D</sub> =15A                         |      | 28    | 36   | mΩ   |
| TOO(OIV)        |                                                | Vgs=4.5V , ID=7A                                                   |      | 38    | 45   | mΩ   |
| VGS(th)         | Gate Threshold Voltage                         | \/aa=\/aa  a =250uA                                                | 1.2  | 1.6   | 2.5  | V    |
| riangle VGS(th) | V <sub>GS(th)</sub> Temperature Coefficient    | Vgs=Vds , Id =250uA                                                |      | -4.8  |      | mV/℃ |
| IDSS            | Drain-Source Leakage Current                   | V <sub>DS</sub> =48V , V <sub>GS</sub> =0V , T <sub>J</sub> =25℃   |      |       | 1    | uA   |
|                 |                                                | V <sub>DS</sub> =48V , V <sub>GS</sub> =0V , T <sub>J</sub> =55℃   |      |       | 5    |      |
| IGSS            | Gate-Source Leakage Current                    | Vgs=±20V , Vds=0V                                                  |      |       | ±100 | nA   |
| gfs             | Forward Transconductance                       | V <sub>D</sub> s=5V , I <sub>D</sub> =15A                          |      | 25.3  |      | S    |
| Rg              | Gate Resistance                                | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                 |      | 2.5   |      | Ω    |
| Qg              | Total Gate Charge (10V)                        | Vps=48V , Vgs=10V , Ip=15A                                         |      | 19    |      |      |
| Qgs             | Gate-Source Charge                             |                                                                    |      | 2.5   |      | nC   |
| $Q_{gd}$        | Gate-Drain Charge                              |                                                                    |      | 5     |      |      |
| Td(on)          | Turn-On Delay Time                             |                                                                    |      | 2.8   |      |      |
| Tr              | Rise Time                                      | V <sub>DD</sub> =30V , V <sub>GS</sub> =10V , R <sub>G</sub> =3.3Ω |      | 16.6  |      | ns   |
| Td(off)         | Turn-Off Delay Time                            | lb=15A                                                             |      | 21.2  |      |      |
| Tf              | Fall Time                                      |                                                                    |      | 5.6   |      |      |
| Ciss            | Input Capacitance                              |                                                                    |      | 1027  |      |      |
| Coss            | Output Capacitance                             | V <sub>DS</sub> =15V , V <sub>GS</sub> =0V , f=1MHz                |      | 65    |      | pF   |
| Crss            | Reverse Transfer Capacitance                   |                                                                    |      | 46    |      |      |
| ls              | Continuous Source Current <sup>1,6</sup>       | \/\/\/\/                                                           |      |       | 20   | Α    |
| ISM             | Pulsed Source Current <sup>2,6</sup>           | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current                 |      |       | 40   | Α    |
| VSD             | Diode Forward Voltage <sup>2</sup>             | Vgs=0V , Is=1A , Tյ=25℃                                            |      |       | 1.2  | V    |
| trr             | Reverse Recovery Time                          | IF=15A , dI/dt=100A/μs ,                                           |      | 12.2  |      | nS   |
| Qrr             | Reverse Recovery Charge                        | TJ=25°C                                                            |      | 7.3   |      | nC   |

#### Note:

- 1. The data tested by surface mounted on a 1 inch $^2$  FR-4 board with 2OZ copper.
- $2 \sqrt{100} \, \mathrm{The} \, \mathrm{data} \, \mathrm{tested} \, \mathrm{by} \, \mathrm{pulsed} \, \mathrm{data} \, \mathrm{shows} \, \mathrm{Max}. \, \mathrm{rating} \, \mathrm{data} \, \mathrm{shows} \, \mathrm{Max}. \, \mathrm{rating} \, \mathrm{data} \, \mathrm{data} \, \mathrm{shows} \, \mathrm{Max}. \, \mathrm{rating} \, \mathrm{data} \, \mathrm{d$
- 3 、The test cond  $\leq$  300us duty cycle  $\leq$  2%, duty cycle ition is TJ =25  $^{\circ}$ C, VDD =48V, VG =10V, RG =25 $\Omega$ , L=0.1mH, IAS =13A

2

- 4. The power dissipation is limited by 175°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

www.sxsemi.com



#### **Typical Characteristics**

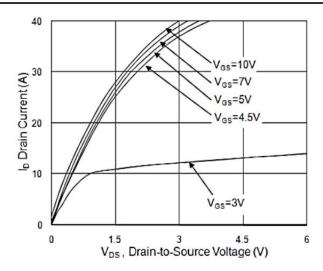



Fig.1 Typical Output Characteristics

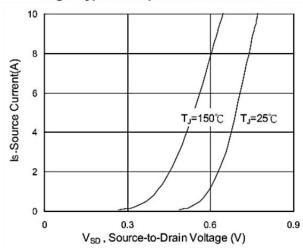



Fig.3 Forward Characteristics Of Reverse

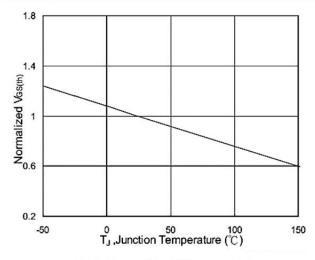



Fig.5 Normalized V<sub>GS(th)</sub> vs. T<sub>J</sub>

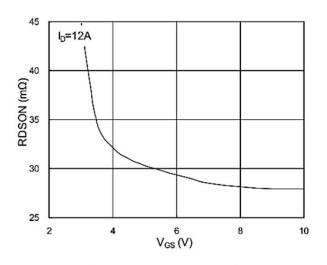



Fig.2 On-Resistance vs. Gate-Source

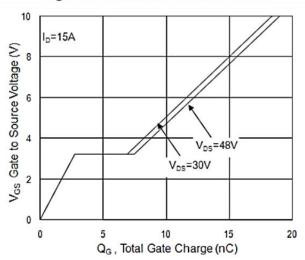



Fig.4 Gate-Charge Characteristics

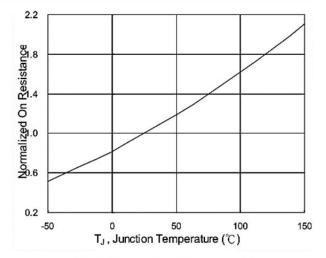



Fig.6 Normalized RDSON vs. TJ



### **Typical Characteristics**



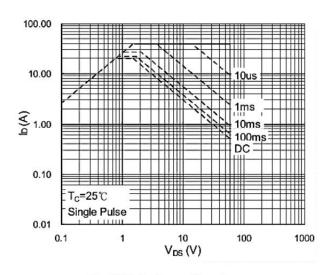



Fig.7 Capacitance

Fig.8 Safe Operating Area

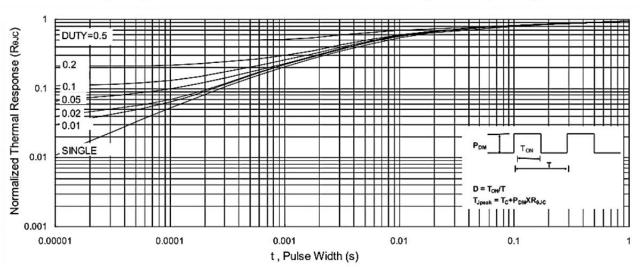



Fig.9 Normalized Maximum Transient Thermal Impedance

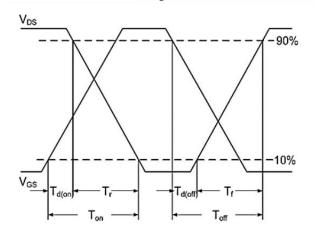
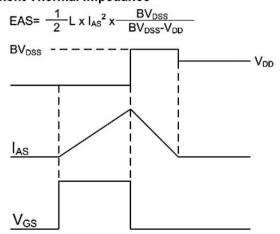
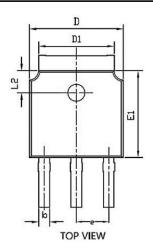
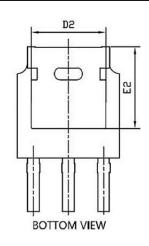
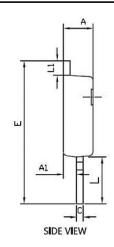



Fig.10 Switching Time Waveform



Fig.11 Unclamped Inductive Switching Waveform






# Package Mechanical Data-TO-251S-3L







| Symbol | mm       |      |      |  |
|--------|----------|------|------|--|
|        | Mim      | Nom  | Max  |  |
| Α      | 2.2      | 2.3  | 2.4  |  |
| A1     | 0.9      | 1.0  | 1.1  |  |
| b      | 0.66     | 0.76 | 0.86 |  |
| С      | 0.46     | 0.52 | 0.58 |  |
| D      | 6.50     | 6.6  | 6.7  |  |
| D1     | 5.15     | 5.3  | 5.45 |  |
| D2     | 4.6      | 4.8  | 4.95 |  |
| E      | 10.4     |      | 11.5 |  |
| E1     | 6.0      | 6.1  | 6.2  |  |
| E2     | 5.400REF |      |      |  |
| е      | 2.286BSC |      |      |  |
| L      | 3.5      | 4.0  | 4.3  |  |
| L1     | 0.9      |      | 1.27 |  |
| L2     | 1.4      |      | 1.9  |  |

**Package Marking and Ordering Information** 

| Product ID | Pack       | Marking | Qty(PCS) |
|------------|------------|---------|----------|
| TAPING     | TO-251S-3L |         | 4000     |