

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	SN74LVC2G14
Overseas Part Number	SN74LVC2G14
▶ Equivalent Part Number	SN74LVC2G14

General Description

The SN74LVC2G14 is a high performance dual inverter with Schmitt-Trigger inputs operating from a 1.65 to 5.5 V supply. Pin configuration and function are the same as the SN74LVC2G04, but the inputs have hysteresis and, with its Schmitt trigger function, the SN74LVC2G14 can be used as a line receiver which will receive slow input signals.

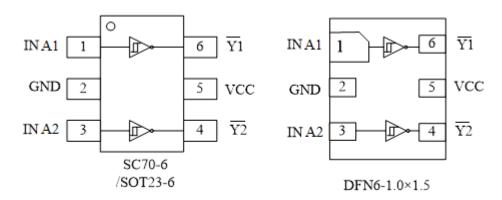
The SN74LVC2G14 is capable of transforming slowly changing input signals into sharply defined, jitter–free output signals. In addition, it has a greater noise margin than conventional inverters.

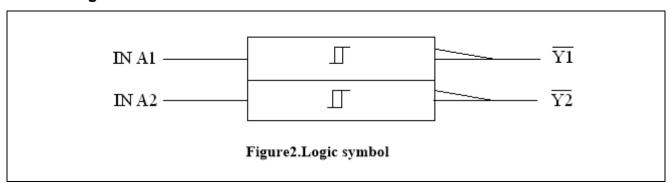
The SN74LVC2G14 has hysteresis between the positive-going and the negative-going input thresholds (typically 1V) which is determined internally by transistor radios and is essentially insensitive to temperature and supply voltage variations.

Features

- Designed for 1.65V to 5.5V V_{CC} Operation
- Over Voltage Tolerant Inputs and Outputs
- LVTTL Compatible Interface Capability with 5 V TTL Logic with V_{CC} = 3V
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Current Drive Capability is 24 mA at the Outputs
- Chip Complexity: FET = 72
- These Devices are Pb-Free and are RoHS Compliant

Pin Configuration




Figure 1. Pinouts (Top View)

Pin Function

PIN	ASSIGNMENT
1	IN A1
2	GND
3	IN A2
4	$\overline{\mathrm{Y2}}$
5	VCC
6	ΥI

Block Diagram

Functional Description

Function Table

A Input	Y Output
L	Н
Н	L

Absolute Maximum Ratings

Symbol	Para	Parameter		Unit
V_{CC}	DC Suppl	y Voltage	−0.5 to 7.0	V
VI	DC Inpu	t Voltage	$-0.5 \le V_I \le +7.0$	V
V_{O}	DC Output Voltage Output in	Higher or Low State (Note 1)	-0.5 to $V_{CC} + 0.5$	V
I_{IK}	DC Input Diode Cu	irrent V _I < GND	-50	mA
I _{OK}	DC Output Diode Cu	urrent V _O <gnd, v<sub="">O>V_{CC}</gnd,>	±50	mA
Io	DC Output S	Sink Current	±50	mA
I_{CC}	DC Supply Curre	nt per Supply Pin	±100	mA
$I_{ m GND}$	DC Ground Curre	ent per Supply Pin	±100	mA
T _{STG}	Storage Temp	Storage Temperature Range		
$T_{\rm L}$	Lead Temperature, 1 mm	Lead Temperature, 1 mm from Case for 10 Seconds		
TJ	Junction Temper	ature Under Bias	150	°C
$\theta_{ ext{JA}}$	Thermal F	Resistance	333	°C/W
P _D	Power Dissipation	in Still Air at 85 ℃	200	mW
MSL	Moisture S	Sensitivity	Level 1	
F_R	Flammability Rating	Oxygen Index:28 to 34	UL94V-0@0.12in	
	ESD Classification Human	Body Model (Note 2)	2000	
ESD		Machine Model (Note3)	200	V
	(Charged Device Model (Note 4)	N/A	
I _{Latchup}	Latchup Performance Above V	CC and Below GND at 125 °C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. IO absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- 3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V	DC Supply Voltage Operating		5.5	V
V_{CC}	Date Retention	1.5	5.5	v
$V_{\rm IN}$	DC Input Voltage	0	5.5	V
V_{OUT}	DC Output Voltage (High or Low State)		5.5	V
T_A	Operating Temperature Range	-55	125	°C
	Input Rise and Fall Time $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0	20	
t_r,t_f	$V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V
	$V_{CC} = 5.0 \text{ V } \pm 0.5 \text{ V}$	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended.

Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

Gh.d	D	C . 122	MCC(M)	T	$A = 25^{\circ}$	PC	-55°C ≤	ΓΑ≤125°C	TT . *4
Symbol	Parameter	Condition	VCC(V)	Min	Тур	Max	Min	Max	Unit
V_{IH}	High-Level Input Voltage		1.65to1.95 2.3 to 5.5	0.75Vcc 0.7Vcc			0.75Vcc 0.7Vcc		V
V_{IL}	Low-Level Input Voltage		1.65to1.95 2.3 to 5.5			0.25Vcc 0.3Vcc		0.25Vcc 0.3Vcc	V
	High–Level Output	$I_{OH} = -100uA$ $I_{OH} = -3mA$ $I_{OH} = -8mA$	1.65to5.5 1.65 2.3	1.29 1.9	Vcc 1.52 2.1		1.29 1.9		
$ m V_{OH}$	Voltage $V_{IN} = V_{IL}$	$I_{OH} = -12 \text{mA}$ $I_{OH} = -16 \text{mA}$ $I_{OH} = -24 \text{mA}$ $I_{OH} = -32 \text{mA}$	2.7 3.0 3.0 4.5	2.2 2.4 2.3 3.8	2.4 2.7 25 4.0		2.2 2.4 2.3 3.8		V
$V_{ m OL}$	$\begin{array}{c} Low-Level \\ Output \\ Voltage \ V_{IN} = \\ V_{IH} \end{array}$	$I_{OH} = 100uA$ $I_{OL} = 3mA$ $I_{OL} = 8mA$ $I_{OL} = 12mA$ $I_{OL} = 16mA$ $I_{OL} = 24mA$ $I_{OL} = 32mA$	1.65to5.5 1.65 2.3 2.7 3.0 3.0 4.5		0.0 0.08 0.20 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
${ m I_{IN}}$	Input Leakage Current	$V_{IN} = 5.5V$ or GND	0 to 5.5		±0.1			±1.0	uA
$I_{ m OFF}$	Power Off Leakage Current	$V_{IN} = 5.5V$ or $V_{OUT} = 5.5V$	0			1		10	uA
I_{CC}	Quiescent Supply Current	V _{IN} = 5.5V or GND	5.5					10	uA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS tr=tf= 2.5ns; C_L = 50pF; R_L = 500 Ω

Symbol	Parameter	Condition	V _{CC} (V)	7	$\Gamma A = 25^{\circ}$	°C		5°C 125°C	Unit
	100			Min	Тур	Max	Min	Max	
		D = 1MO C = 15 pE	1.65	2.0	5.3	11.4	2.0	12.0	(3)
		$R_L=1M\Omega C_L=15 pF$	1.8	2.0	4.4	9.5	2.0	10.0	
4	Duoma cation Dalay	$R_L=1M\Omega C_L=15 pF$	2.5±0.2	0.2	3.5	6.5	0.8	4.1	
t _{PLH}	Propagation Delay (Figure3and4)	$R_L=1M\Omega C_L=15 pF$	22.02	0.8	2.1	4.5	0.5	3.7	ns
$t_{ m PHL}$		(Figure 3 and 4) $R_L = 500\Omega C_L = 50 \text{ pF}$ 3.3 ±0.3	3.3±0.3	1.2	2.9	5.5	1.5	5.2	
		$R_L=1M\Omega C_L=15 pF$	50.05	0.5	1.8	3.9	0.5	4.1	
		R_L = 500 Ω C_L =50 pF	5.0±0.5	0.8	2.4	4.3	0.8	4.5	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	V_{CC} = 5.5 V , V_{I} = 0 V or V_{CC}	>2.5	pF
C	Power Dissipation Capacitance	$10MHz, V_{CC} = 3.3 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	4	"E
C_{PD}	(Note 6)	10MHz, $V_{CC} = 5.5 \text{ V}$, $V_I = 0 \text{ V}$ or V_{CC}	4	pF

6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

 $I_{CC(OPR)}\!\!=\!\!C_{PD}*V_{CC}*fin\!+\!I_{CC}*C_{PD} \text{ is used to determine the no-load dynamic power consumption;}$

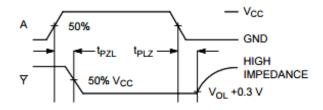
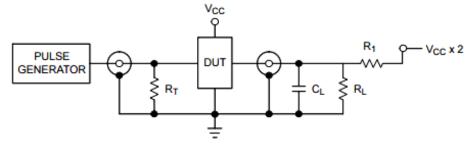
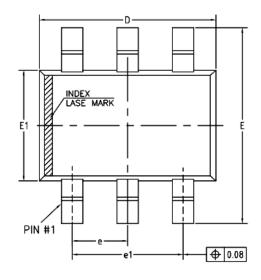



Figure 3. Switching Waveforms



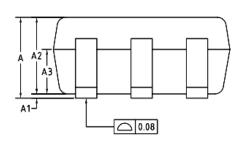
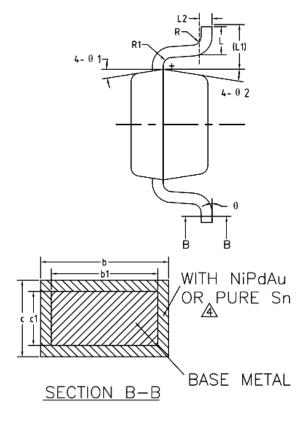
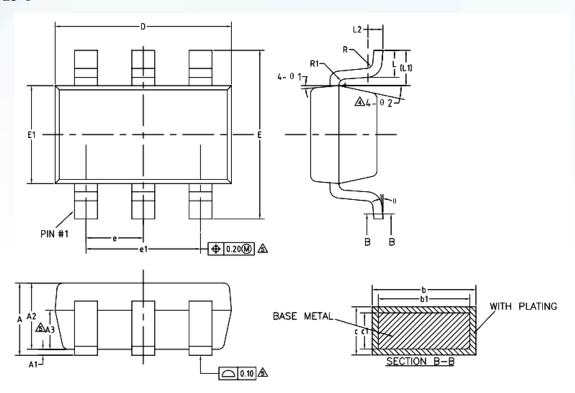

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

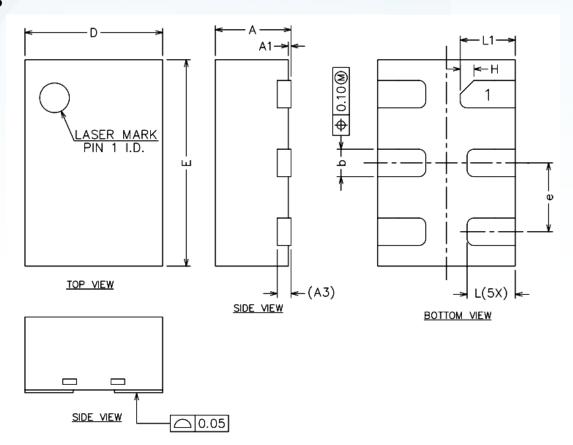
Package Dimension


SC70-6


COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	0.85	_	1.05		
A1	0	0.10			
A2	0.80	0.90	1.00		
A3	0.47	0.52	0.57		
b NiPdAu	0.22	_	0.29		
PURE Sn	0.23	_	0.33		
b1	0.22	0.25	0.28		
c NiPdAu	0.115	-	0.15		
PURE Sn	0.12	_	0.18		
c1	0.115	0.13	0.14		
C1 D E	2.02	2.07	2.12		
E	2.20	2.30	2.40		
E1	1.25	1.30	1.35		
e	0.60	0.65	0.70		
e1	1.20	1.30	1.40		
L	0.28	0.33	0.38		
L1	0.50REF				
L L1 L2	0.15BSC				
R	0.10	-	-		
R1	0.10	_	0.25		
θ	0.	_	8.		
θ 1	6*	9,	12*		
θ 2	6*	9.	12'		

SOT23-6



COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

	SYMBOL	MIN	NOM	MAX
	Α	-	-	1.25
	A1	0	1	0.15
	A2	1.00	1.10	1.20
	A3	0.60	0.65	0.70
	b	0.36	ı	0.50
	b1	0.36	0.38	0.45
	С	0.14	-	0.20
	c1	0.14	0.15	0.16
	D	2.826	2.926	3.026
	E	2.60	2.80	3.00
	E1	1.526	1.626	1.726
<u>∧</u> ∧	е	0.90	0.95	1.00
҈Ѧ	e1	1.80	1.90	2.00
	L	0.35	0.45	0.60
	L1		0.59REF	
	L2		0.25BSC	
◬	R	0.10	ı	-
◬	R1	0.10	ı	0.20
	θ	0.	ı	8*
	θ 1	3.	5*	7*
҈҈	θ2	6	ı	14'

DFN6

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.50	-	0.60
A1	0.00	0.02	0.05
A3		0.10REF	
b	0.15	0.20	0.25
D	0.90	1.00	1.10
E	1.40	1.50	1.60
е	0.40	0.50	0.60
Н		0.10REF	
L	0.30	0.35	0.40
L1	0.35	0.40	0.45

Orderinginformation

Order code	Marking code	Package	Baseqty	Deliverymode
SN74LVC2G14DBVR	C145	SOT23-6	3000	Tape and reel
SN74LVC2G14DCKR	CF5	SC70-6	3000	Tape and reel
SN74LVC2G14DRYR	CF	DFN6	3000	Tape and reel

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.