

40V N-Channel Enhancement Mode MOSFET

Description

The SX25N04D uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =25A

 $R_{DS(ON)} < 30 m\Omega$ @ $V_{GS}=10V$

Application

Wireless charging

Boost driver

Brushless motor

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
l o@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	25	А
l b@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	14.9	А
Ірм	Pulsed Drain Current ²	73	А
EAS	Single Pulse Avalanche Energy ³	16.2	mJ
las	Avalanche Current 14		Α
PD@TA=25°C	Total Power Dissipation ⁴	1.67	W
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
Reja	Thermal Resistance Junction-Ambient ¹ 75		°C/W
Rejc	Thermal Resistance Junction-Case ¹	30	°C/W

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.032		V/℃	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=4A		23	30	mΩ	
1.23(3.1)		Vgs=4.5V , Ip=3A		30	45		
VGS(th)	Gate Threshold Voltage	Vgs=Vds,Id =250uA	1.0	1.5	2.5	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -230UA		-4.5		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25℃			1	uA	
1033		V _{DS} =32V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		8		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.4	4.8	Ω	
Qg	Total Gate Charge (4.5V)			5			
Qgs	Gate-Source Charge	Vps=15V , Vgs=4.5V , Ip=3A		1.54		nC	
Qgd	Gate-Drain Charge			1.84			
Td(on)	Turn-On Delay Time			7.8			
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V ,		2.1			
Td(off)	Turn-Off Delay Time	Rց=3.3Ω I⊳=1A		29		ns	
Tf	Fall Time	ID− 1/A		2.1		1	
Ciss	Input Capacitance			452			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		51		pF	
Crss	Reverse Transfer Capacitance			38			
IS	Continuous Source Current ^{1,4}	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			4.5	Α	
ISM	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			14	Α	
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V	

- Note:
 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The power dissipation is limited by 150 $^{\circ}\mathrm{C}\textsc{junction}$ temperature
- $4\sqrt{100}$ The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

2

 ${\tt www.sxsemi.com}$

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area vs. Case Temperature

Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data:TO-252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF		0.209REF			
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Package Marking and Ordering Information

r dokage marking and cracing information					
Product ID	Pack	Marking	Qty(PCS)		
TAPING	TO-252-3L		2500		

5

www.sxsemi.com