

30V N-Channel Enhancement Mode MOSFET

Description

The SX6N03SI uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =6.3A

 $R_{DS(ON)} < 35m\Omega$ @ $V_{GS}=4.5V$

Application

3.3V MCU

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_C=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	30	V	
Vgs	Gate-Source Voltage	±12	V	
lo@Ta=25°C	Continuous Drain Current 6.3		А	
lo@Ta=70°C	Continuous Drain Current 4.7		Α	
Ірм	Pulsed Drain Current ² 30		Α	
Po@Ta=25°C	Total Power Dissipation ³	1.5	W	
Тѕтс	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
Reja	Thermal Resistance Junction-ambient ¹	85	°C/W	
Rеja	Thermal Resistance Junction-Ambient ¹ (t ≤10s)	30	°C/W	

30V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	33		V	
△BVDSS/△T J	BVDSS Temperature Coefficient	Reference to 25℃, l _D =1mA		0.029		V/°C	
	Static Drain-Source On-Resistance ²	V _G s=10V , I _D =5A		22	26	mΩ	
RDS(ON)		Vgs=4.5V , ID=3A		24	35		
		Vgs=2.5V , ID=1A		36	40		
VGS(th)	Gate Threshold Voltage	\/ \/ \ \ 050\	0.5	0.9	1.2	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	VGS=VDS , ID =250uA		-2.82		mV/℃	
1000	Drain Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25℃			1	uA	
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	Vgs=±12V , Vps=0V			±100	nA	
gfs	Forward Transconductance	Vps=5V , Ip=5A		25		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.5		Ω	
Qg	Total Gate Charge (4.5V)			11.5			
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =5.8A		1.6		nC	
Qgd	Gate-Drain Charge			2.9			
Td(on)	Turn-On Delay Time			5			
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V , R _G =3Ω		47.			
Td(off)	Turn-Off Delay Time	lo=5A		26		ns	
Tf	Fall Time			8			
Ciss	Input Capacitance			530			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		130		pF	
Crss	Reverse Transfer Capacitance			36			
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			5.8	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V	

Note:

- $1\,{}_{\sim}$ The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3 . The power dissipation is limited by $150\,^\circ\!\mathrm{C}\textsc{junction}$ temperature
- 4 . The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Gate Charge Waveform

Package Mechanical Data:SOT89-3L

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.350	0.520	0.013	0.197
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550) REF	0.061	REF
E	2.350	2.550	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500) TYP	0.06	OTYP
e1	3.000 TYP		0.118	8TYP
L	0.900	1.100	0.035	0.047

Package Marking and Ordering Information

- aromage manning an	a cracing incommuni		
Product ID	Pack	Marking	Qty(PCS)
TAPING	SOT89-3L		3000