

HACP1204QN型

低抖动LVPECL时钟缓冲器 产品说明书

成都华奥创芯科技有限公司

1 产品概述

HACP1204QN 是一款 2.0GHz、4 路输出差分高性能时钟扇出缓冲器,且高度通用、低附加抖动缓冲器,可以从两个可选的 LVPECL、LVDS 或 LVCMOS 输入之一生成四对 LVPECL 时钟副,用于各种通信应用。它的最大时钟频率高达 2.0GHz。该器件专为高频、低相位噪声时钟和数据信号的信号扇出而设计。

2 产品特性

- a) 2: 4 差分时钟缓冲器;
- b) 通用输入接受 LVPECL、LVDS 和 LVCMOS/LVTTL;
- c) 四路 LVPECL 输出;
- d) 最大输出频率 (LVPECL): 2.0GHz;
- e) 最大传播延迟: 500ps (典型值);
- f) 输出偏斜: 20ps (典型);
- g) 低附加抖动@156.25MHz: 38fs RMS (10kHz~20MHz);
- h) 电源电压: 3.3V 或 2.5V;
- i) 与 TI 公司的 CDCLVP1204 引脚兼容;
- j) 封装形式为 QFN16, 塑封。

3 功能描述

表1输入选择真值表

IN_SEL	时钟输入
0	INPO, INNO
1	INP1, INN1

4 原理框图

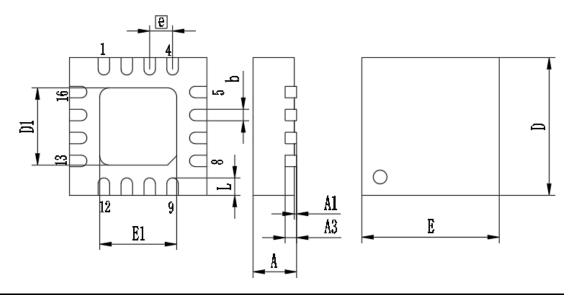
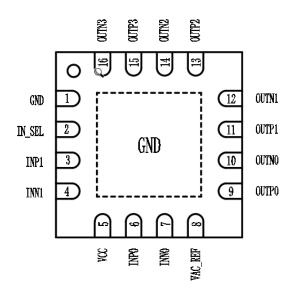

产品的功能原理框图如图 1 所示。

图1 功能框图

5 封装形式及尺寸

HACP1204QN 采用 QFN16 封装,具体封装尺寸如图 2 所示。


尺寸符号	数值(单位: mm)				
人力和五	最小	公称	最大		
A	0.80	0.90	1.00		
A1	0	0.02	0.05		
A3		0.20			
D	2.90	3.00	3.10		
Е	2.90	3.00	3.10		
D1	1.60	1.70	1.80		
E1	1.60	1.70	1.80		
b	0.20	0.25	0.30		

e		0.5BSC	
L	0.30	0.40	0.50

图2 HACP1204QN 封装尺寸图

6 引出端排列图

注: 底部焊盘 PAD (即 GND) 必须连接至 VEE。

图3 HACP1204QN 引出端排列图(顶视图)

表2 HACP1204QN 引出端功能表

引出端 序号	符号	I/O	功能		
1	GND		接地		
2	INSEL	I	输入选择,内部 150k Ω 下拉电阻。		
3	INP1	I	差分或单端输入		
4	INN1	I	差分时钟输入		
5	VCC	I	电源		
6	INP0	I	冗余差分输入或单端输入		
7	INN0	I	反向差分时钟		
8	V_{AC_REF}	О	基准输出电压。如果使用,建议在此引脚上使用 0.1 µ F 至 GND。		
9	OUTP0	О	差分 LVPECL 时钟输出对 0,未使用可悬空。		
10	OUTN0	О	差分 LVPECL 时钟输出对 0,未使用可悬空。		

11	OUTP1	О	差分 LVPECL 时钟输出对 1,未使用可悬空。
12	OUTN1	О	差分 LVPECL 时钟输出对 1,未使用可悬空。
13	OUTP2	О	差分 LVPECL 时钟输出对 2,未使用可悬空。
14	OUTN2	О	差分 LVPECL 时钟输出对 2,未使用可悬空。
15	OUTP3	О	差分 LVPECL 时钟输出对 3,未使用可悬空。
16	OUTN3	О	差分 LVPECL 时钟输出对 3,未使用可悬空。

7 绝对最大额定值

参数	符号	最小值	最大值	单位
电源电压	VCC	0.5	4.6	V
输入电压	VIN	-0.5	VCC+0.5	V
结温范围	T_{J}		125	${\mathbb C}$
储藏温度	T_{STG}	-65	150	$^{\circ}$ C

8 推荐工作条件

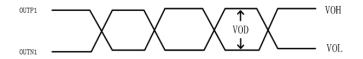
参数	符号	最小值	最大值	单位
电源电压	VCC	3.135	3.465	V
电极电压	VCC	2.375	2.625	V
工作温度	T_A	-40	85	$^{\circ}\!\mathbb{C}$

9 电特性

除另有规定外,VCC=2.375V \sim 3.6V,-40°C \leq T_A \leq 85°C,产品的电特性见表3 所示。

表3 电特性

参数	佐旦	符号 条件		参数值				
少 数	14 A	亲 什	最小	典型	最大	单位		
LVCMOS 输入特性								
输入频率	F_{IN}	VCC=3.3V	0.1		250	MHz		
输入阈值电 压	V_{th}	施加到互补输入端的外部阈值 电压	1.1		1.8	V		
输入高电压	V_{IH}		1.2		VCC	V		
输入低电压	V_{IL}	1	0		1.7	V		
输入高电流	I_{IH}	$VCC=3.6V, V_{IH}=3.6V$			40	μΑ		
输入低电流	I_{IL}	$VCC=3.6, V_{IL}=0V$			-40	μA		
转换速率	$\Delta V/\Delta T$	20%到 80%	1.5			V/ns		



输入电容	C_{IN}			2.5		pF
差分输入特性						P-
输入频率	F _{IN}		0.1		2000	MHz
差分输入电		$F_{IN} \leq 1.5 \text{ GHz}$	0.1		1.5	V
压(峰峰值)	$V_{IN,DIF,PP}$	$1.5 \text{GHz} \leq F_{\text{IN}} \leq 2 \text{GHz}$	0.2		1.5	V
输入共模电 压	$V_{\rm ICM}$		1		VCC-0.3	V
输入高电流	I_{IH}	VCC=3.6V, V _{IH} =3.6V			40	μΑ
输入低电流	I_{IL}	VCC=3.6V, V _{IL} =0V			-40	μΑ
转换速率	$\Delta V/\Delta T$	20%到 80%	1.5			V/ns
输入电容	C_{IN}			2.5		pF
LVPECL 输出	特性(VCC=2	2. 5V±5%)				
输出高电压	V_{OH}		VCC-1.2		VCC-0.9	V
输出低电压	V_{OL}		VCC-1.7		VCC-1.3	V
差分输出电 压(峰峰值)	V _{OUT,DIFF,PP}	$F_{IN} \leq 2GHz$		1.15		V
输入偏置电 压	$V_{\text{AC_REF}}$	I _{AC_REF} =2 mA	VCC-1.6		VCC-1.1	V
传播延迟	t_{PD}			0.5	1.5	ns
输出偏斜	$t_{SK,O}$			20	50	ps
脉冲偏斜	$t_{SK,P}$	50% 占空比输入,交叉点间失 真,F _{OUT} =100MHz。	-50		50	ps
随机附加抖 动	t_{RJIT}	相位抖动@ 156.25MHz: (10kHz~20MHz)		47	70	fs
输出上升和 下降时间	t _R /t _F	20%到 80%			500	ps
LVPECL 输出	特性(VCC=3	3. 3V±5%)				
输出高电压	V_{OH}		VCC-1.2		VCC-0.9	V
输出低电压	V_{OL}		VCC-1.7		VCC-1.3	V
差分输出电 压(峰峰值)	$V_{\text{OUT,DIFF,PP}}$	$F_{IN} \leq 2GHz$	0.65		1.35	V
输入偏置电 压	V_{AC_REF}	I _{AC_REF} =2 mA	VCC-1.6		VCC-1.1	V
传播延迟	t _{PD}			0.5	1.5	ns
输出偏斜	$t_{SK,O}$				50	ps
脉冲偏斜	$t_{ m SK,P}$	50% 占空比输入,交叉点间失 真,F _{OUT} =100MHz。	-50		50	ps
随机附加抖 动	t _{RJIT}	相位抖动@ 156.25MHz: (10kHz~20MHz)		38	70	fs
输出上升和 下降时间	t_R/t_F	20%到 80%			500	ps

备注:内部产生的偏置电压(VAC_REF)仅适用于 3.3V,建议在 VCC<3V 时施加外部产生的偏置电

压。

10 典型性能特征

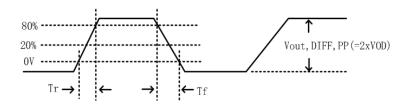


图4输出电压和上升/下降时间

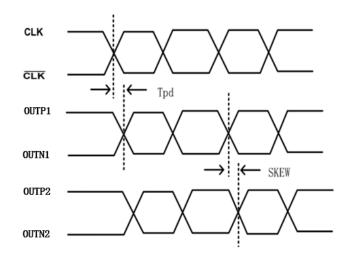


图5输出和偏斜

注:输出偏斜按以下两者中的较大值计算:作为最快和最慢 tPLHn 之间的差值($n=0,1,2\cdots.7$),或作为最快与最慢 tPHLn 之间的差($n=0,1,2\cdots.7$)。

11 典型应用及注意事项

a) 差分信号输入以接受单端电平电路

对于单端输入的 LVCMOS 信号,驱动器中的 Rs 和 R0 形成 50 Ω 阻抗匹配,定向隔离电容器 C3 避免了输入和输出之间共模电平的影响,然后通过分压器和共模电平将接收器驱动到 VCC/2。

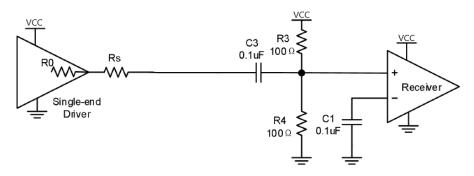


图6差分输入的单端接方法

b) 输入连接电路

CLK/CLK接受 LVDS、LVPECL、HCSL 和其他差分信号。两个差分信号都必须满足 VPP 和 VCMR 输入要求。图 7 至图 11 显示了由最常见的驱动器类型驱动的 CLK/CLK输入的接口示例。

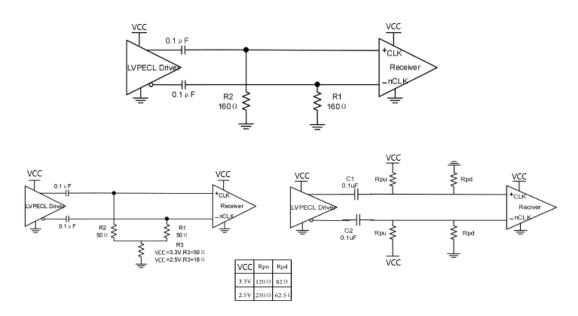


图7 LVPECL 驱动器 (AC)

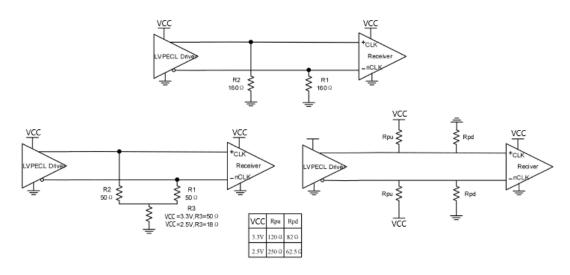


图8 LVPECL 驱动器 (DC)

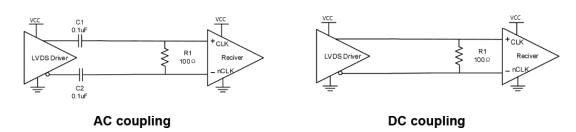


图9 LVDS 驱动器

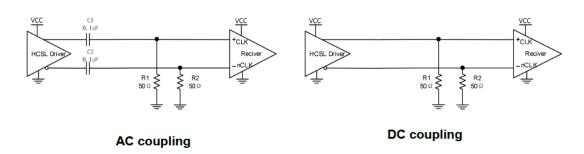


图10 HCSL 驱动器

c) 输出连接电路

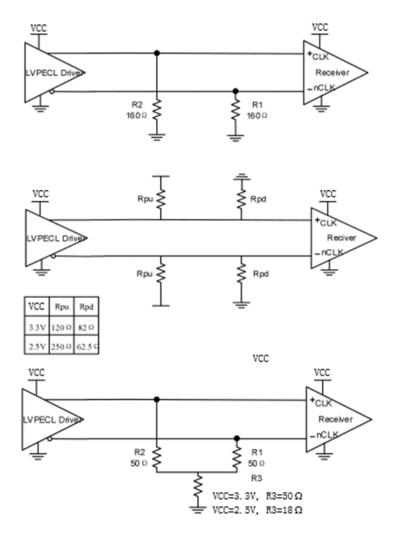


图11 LVPECL 驱动器

12 订货信息

<u>HA</u>	<u>CP</u>	<u>1204</u>	$\mathbf{Q}\mathbf{N}$
(1)	2	(3)	(4)

- ① 单位简称
- ② 产品分类标识
- ③ 产品代号
- ④ 封装形式标识

13 版本修订

表4版本修订汇总表

版本	时间	描述	更改页
V1.0	2023.8.12	新建	

成	都	华	奥	创	芯	科	技	有	限	公	司
Ch	eng	du l	Hua	aoc	hip	Tec	hno	log	y C	o.,]	Ltd

HACHIP

Chengdu Huaaochip Technology Co., Ltd	HACP1204QN