

Description

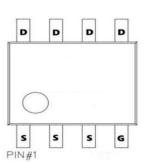
The SX30P03S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -30V I_{D} = -30A$


 $R_{DS(ON)}$ <6.5m Ω @ Vgs=-10V

Application


Lithium battery protection

Wireless impact

Mobile phone fast charging

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	-30	V
VGS	Gate-Source Voltage	±20	V
ID@TC=25°C	Continuous Drain Current, VGS @ -10V1	-30	Α
ID@TC=100℃	Continuous Drain Current, VGS @ -10V1	-26.8	Α
IDM	Pulsed Drain Current2	-80	Α
EAS	Single Pulse Avalanche Energy3	250	mJ
PD@TC=25℃	Total Power Dissipation4	69	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
RθJA	Thermal Resistance Junction-Ambient 1	85	°C/W
RθJC	Thermal Resistance Junction-Case1	1.6	°C/W

1

Electrical Characteristics (T_J=25 ^oC, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	VGS=0V, ID= -250μA	-30	-33	-	V
IDSS	Zero Gate Voltage Drain Current	VDS= -30V, VGS=0V,	-	-	-1	μΑ
IGSS	Gate to Body Leakage Current	VDS=0V, VGS= ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID= -250μA	-1.0	-1.6	-2.5	V
DDC()		VGS= -10V, ID= -30A	-	4.9	6.4	
RDS(on)	Static Drain-Source on-Resistance	VGS= -4.5V, ID= -20A	-	7.5	10.5	mΩ
Ciss	Input Capacitance		-	6800	-	pF
Coss	Output Capacitance	VDS= -15V, VGS=0V, f=1.0MHz	-	769	-	pF
Crss	Reverse Transfer Capacitance		ı	726	_	pF
Qg	Total Gate Charge	\/DQ45\/_1D004	-	30	-	nC
Qgs	Gate-Source Charge	VDS= -15V, ID= -30A, VGS= -10V	-	6	-	nC
Qgd	Gate-Drain("Miller") Charge		ı	8	_	nC
td(on)	Turn-on Delay Time		-	11	-	ns
tr	Turn-on Rise Time	VDD= -15V, ID= -30A,	-	13	-	ns
td(off)	Turn-off Delay Time	VGS= -10V, RGEN=2.5Ω	-	52	-	ns
tf	Turn-off Fall Time		-	21	-	ns
IS	Maximum Continuous Drain to Source	DiodeForward Current	-	-	-90	Α
ISM	Maximum Pulsed Drain to Source D	iode Forward Current	-	-	-360	Α
VSD	Drain to Source Diode Forward Voltage	VGS=0V, IS= -30 A		-0.8	-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- $3\hfill {\sim}$ The power dissipation is limited by $175\hfill {\circ} {\mathbb C}$ junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

Typical Characteristics

Figure1: Output Characteristics

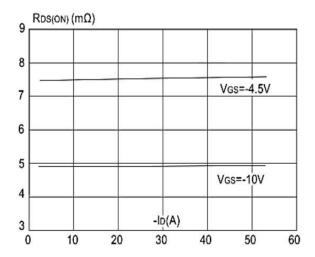


Figure 3:On-resistance vs. Drain Current

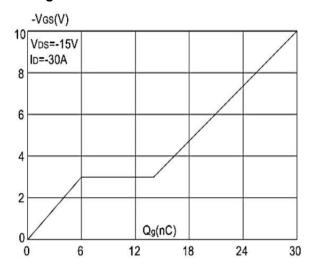
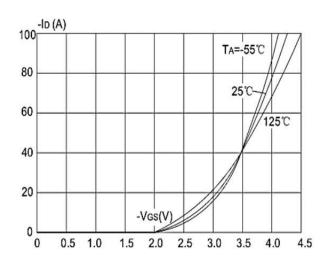



Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

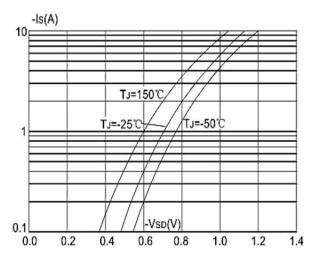


Figure 4: Body Diode Characteristics

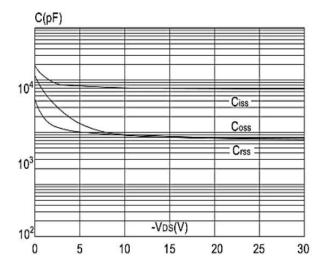


Figure 6: Capacitance Characteristics

Typical Characteristics

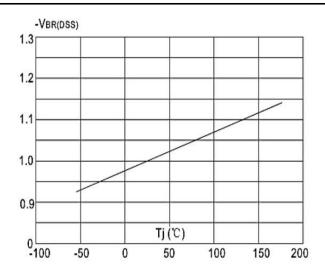


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

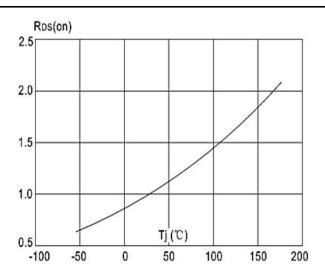


Figure 8: Normalized on Resistance vs. Junction Temperature

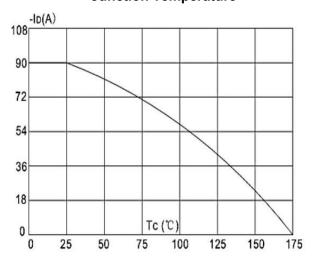
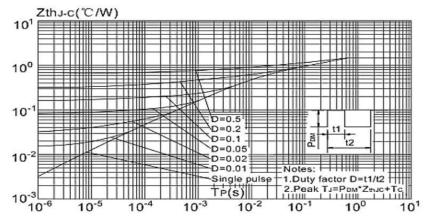
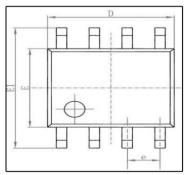
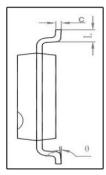
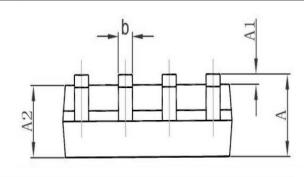
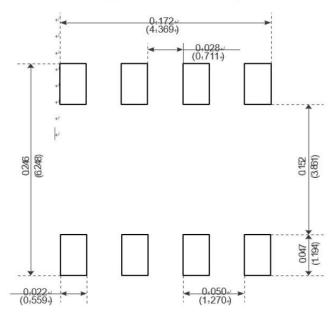


Figure 10: Maximum Continuous Drain Current vs. Case Temperature


Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case


Package Mechanical Data-SOP-8L

CL . I	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0. 100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3.800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000

5