

HACP1216QN型

低抖动LVPECL时钟缓冲器 产品说明书

成都华奥创芯科技有限公司

1 产品概述

HACP1216QN 是一款 2.0GHz、16 路输出差分高性能时钟扇出缓冲器,且高度通用、低附加抖动缓冲器,可以从两个可选的 LVPECL、LVDS、HCSL 或 LVCMOS 输入之一生成十六对 LVPECL 时钟副,用于各种通信应用。它的最大时钟频率高达 2.0GHz。该器件专为高频、低相位噪声时钟和数据信号的信号扇出而设计。

2 产品特性

- a) 2: 16 差分时钟缓冲器;
- b) 通用输入接受 LVPECL、LVDS 和 LVCMOS/LVTTL;
- c) 十六路 LVPECL 输出;
- d) 最大输出频率 (LVPECL): 2.0GHz;
- e) 最大传播延迟: 400ps (典型值);
- f) 输出偏斜: 10ps (典型);
- g) 低附加抖动@156.25MHz: 41fs RMS (10kHz~20MHz);
- h) 电源电压: 3.3V 或 2.5V;
- i) 与 TI 公司的 CDCLVP1216 引脚兼容;
- j) 封装形式为 QFN48, 塑封。

3 功能描述

表1输入选择真值表

IN_SEL	时钟输入
0	INPO, INNO
1	INP1, INN1

4 原理框图

产品的功能原理框图如图 1 所示。

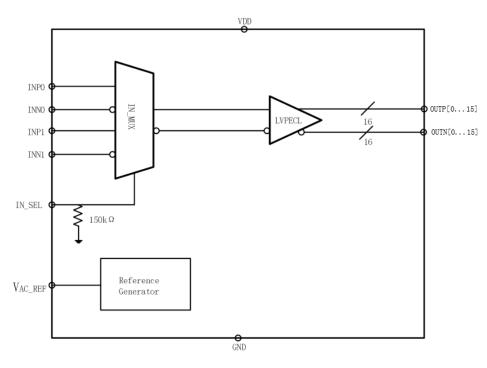
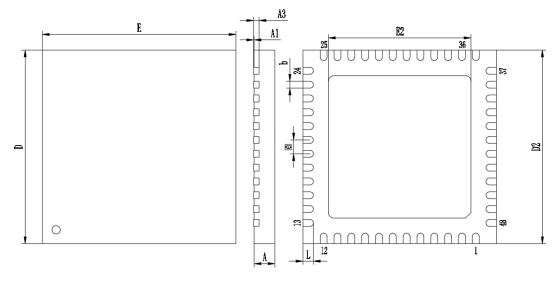
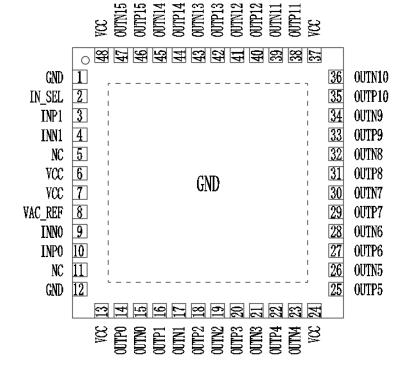



图1 功能框图

5 封装形式及尺寸

HACP1216QN 采用 QFN48 封装,具体封装尺寸如图 2 所示。


尺寸符号	数值(单位: mm)				
人才但是	最小	公称	最大		
A	0.70	0.75	0.80		
A1	0	0.02	0.05		
A3		0.20	1		
b	0.19	0.24	0.29		
D	6.80	7.00	7.20		
Е	6.80	7.00	7.20		

e		0.50BSC	-
D2	5.00	5.15	5.25
E2	5.00	5.15	5.25
K	0.20		
L	0.30	0.40	0.50

图2 HACP1216QN 封装尺寸图

6 引出端排列图

注:底部焊盘 PAD (即 GND)必须连接至 VEE。

图3 HACP1216QN 引出端排列图(顶视图)

表2 HACP1216QN 引出端功能表

引出端 序号	符号	I/O	功能		
1	GND		接地		
2	IN_SEL	I	输入选择,内部 150k Ω下拉电阻。		
3	INP1	I	差分或单端输入		
4	INN1	I	差分时钟输入		
5	NC		悬空		
6	VCC	I	电源		

7	VCC	I	电源
8	V _{AC_REF}	О	基准输出电压。如果使用,建议在此引脚上使用 0.1 μ F 至 GND。
9	INN0	I	差分时钟输入
10	INP0	I	差分或单端输入
11	NC		悬空
12	GND	О	接地
13	VCC	I	电源
14	OUTP0	О	差分 LVPECL 时钟输出对 0,未使用可悬空。
15	OUTN0	О	差分 LVPECL 时钟输出对 0,未使用可悬空。
16	OUTP1	О	差分 LVPECL 时钟输出对 1,未使用可悬空。
17	OUTN1	О	差分 LVPECL 时钟输出对 1,未使用可悬空。
18	OUTP2	О	差分 LVPECL 时钟输出对 2,未使用可悬空。
19	OUTN2	О	差分 LVPECL 时钟输出对 2,未使用可悬空。
20	OUTP3	О	差分 LVPECL 时钟输出对 3,未使用可悬空。
21	OUTN3	О	差分 LVPECL 时钟输出对 3,未使用可悬空。
22	OUTP4	О	差分 LVPECL 时钟输出对 4,未使用可悬空。
23	OUTN4	О	差分 LVPECL 时钟输出对 4,未使用可悬空。
24	VCC	I	电源
25	OUTP5	О	差分 LVPECL 时钟输出对 5,未使用可悬空。
26	OUTN5	О	差分 LVPECL 时钟输出对 5,未使用可悬空。
27	OUTP6	О	差分 LVPECL 时钟输出对 6,未使用可悬空。
28	OUTN6	О	差分 LVPECL 时钟输出对 6,未使用可悬空。
29	OUTP7	О	差分 LVPECL 时钟输出对 7,未使用可悬空。
30	OUTN7	О	差分 LVPECL 时钟输出对 7,未使用可悬空。
31	OUTP8	О	差分 LVPECL 时钟输出对 8,未使用可悬空。
32	OUTN8	О	差分 LVPECL 时钟输出对 8,未使用可悬空。
33	OUTP9	О	差分 LVPECL 时钟输出对 9,未使用可悬空。

34	OUTN9	О	差分 LVPECL 时钟输出对 9,未使用可悬空。
35	OUTP10	0	差分 LVPECL 时钟输出对 10,未使用可悬空。
36	OUTN10	0	差分 LVPECL 时钟输出对 10,未使用可悬空。
37	VCC	I	电源
38	OUTP11	О	差分 LVPECL 时钟输出对 11,未使用可悬空。
39	OUTN11	О	差分 LVPECL 时钟输出对 11,未使用可悬空。
40	OUTP12	О	差分 LVPECL 时钟输出对 12,未使用可悬空。
41	OUTN12	О	差分 LVPECL 时钟输出对 12,未使用可悬空。
42	OUTP13	О	差分 LVPECL 时钟输出对 13,未使用可悬空。
43	OUTN13	О	差分 LVPECL 时钟输出对 13,未使用可悬空。
44	OUTP14	О	差分 LVPECL 时钟输出对 14,未使用可悬空。
45	OUTN14	О	差分 LVPECL 时钟输出对 14,未使用可悬空。
46	OUTP15	О	差分 LVPECL 时钟输出对 15,未使用可悬空。
47	OUTN15	О	差分 LVPECL 时钟输出对 15,未使用可悬空。
48	VCC	I	电源

7 绝对最大额定值

参数	符号	最小值	最大值	单位
电源电压	VCC	0.5	4.6	V
输入电压	VIN	-0.5	VCC+0.5	V
结温范围	T_{J}		125	$^{\circ}$
储藏温度	T_{STG}	-65	150	$^{\circ}$ C

8 推荐工作条件

参数	符号	最小值	最大值	单位
电源电压	VCC	3.135	3.465	V
电源电压 	VCC	2.375	2.625	V
工作温度	T_{A}	-40	85	$^{\circ}$ C

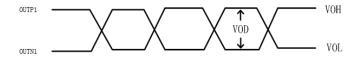
9 电特性

除另有规定外, $VCC=2.375V\sim3.6V$,-40°C \leq T_A \leq 85°C,产品的电特性见表

3 所示。

表3 电特性

会业	<i>///</i> 口	夕 /th		参数值		34 th
参数	符号	条件	最小	典型	最大	单位
LVCMOS 输)	特性					
输入频率	F_{IN}	VCC=3.3V	0.1		250	MHz
输入阈值电 压	V_{th}	施加到互补输入端的外部阈值 电压	1.1		1.8	V
输入高电压	V_{IH}		1.2		VCC	V
输入低电压	$V_{\rm IL}$		0		1.7	V
输入高电流	I_{IH}	VCC=3.6V, V _{IH} =3.6V			40	μΑ
输入低电流	I_{IL}	VCC=3.6, V _{IL} =0V			-40	μΑ
转换速率	$\Delta V/\Delta T$	20%到 80%	1.5			V/ns
输入电容	C_{IN}			5		pF
差分输入特性			1		1	
输入频率	F_{IN}		0.1		2000	MHz
差分输入电	* *	$F_{IN} \leq 1.5 \text{ GHz}$	0.1		1.5	V
压(峰峰值)	$V_{IN,DIF,PP}$	1.5 GHz≤F _{IN} ≤2GHz	0.2		1.5	V
输入共模电 压	$V_{\rm ICM}$		1		VCC-0.3	V
输入高电流	I_{IH}	VCC=3.6V, V _{IH} =3.6V			40	μΑ
输入低电流	I_{IL}	VCC=3.6V, V _{IL} =0V			-40	μΑ
转换速率	$\Delta V/\Delta T$	20%到 80%	1.5			V/ns
输入电容	C_{IN}			5		pF
LVPECL 输出	特性(VCC=2	2.5V±5%)				
输出高电压	V_{OH}		VCC-1.2		VCC-0.9	V
输出低电压	V_{OL}		VCC-1.7		VCC-1.3	V
差分输出电 压(峰峰值)	V _{OUT,DIFF,PP}	F _{IN} ≤2GHz	0.5		1.35	V
输入偏置电 压	V _{AC_REF}	I _{AC_REF} =2 mA	VCC-1.6		VCC-1.1	V
传播延迟	$t_{\rm PD}$			400	600	ps
输出偏斜	$t_{SK,O}$			10	30	ps
脉冲偏斜	$t_{SK,P}$	50%占空比输入,交叉点间失 真,F _{OUT} =100MHz。	-50		50	ps
随机附加抖 动	t_{RJIT}	相位抖动@ 156.25MHz: (10kHz~20MHz)		44	100	fs
输出上升和 下降时间	t_R/t_F	20%到 80%		120	300	ps
工作电流	I_{CC}	VCC=2.5V, F _{IN} =156.25MHz		490		mA
			•			i
LVPECL 输出	特性(VCC=3	$3.3V \pm 5\%$)				



输出低电压	V_{OL}		VCC-1.7		VCC-1.3	V
差分输出电 压(峰峰值)	$V_{OUT,DIFF,PP}$	F _{IN} ≤2GHz	0.65		1.35	V
输入偏置电 压	V_{AC_REF}	I _{AC_REF} =2 mA	VCC-1.6		VCC-1.1	V
传播延迟	$t_{\rm PD}$			400	600	ps
输出偏斜	$t_{SK,O}$			-	50	ps
脉冲偏斜	$t_{SK,P}$	50% 占空比输入,交叉点间失 真,F _{OUT} =100MHz。	-50		50	ps
随机附加抖 动	t _{RJIT}	相位抖动@ 156.25MHz: (10kHz~20MHz)		41	100	fs
输出上升和 下降时间	$t_{ m R}/t_{ m F}$	20%到 80%		120	300	ps
工作电流	I_{CC}	VCC=3.3V, F _{IN} =156.25MHz		620		mA

备注:内部产生的偏置电压(VAC_REF)仅适用于 3.3V,建议在 VCC<3V 时施加外部产生的偏置电

压。

10 典型性能特征

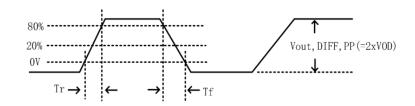
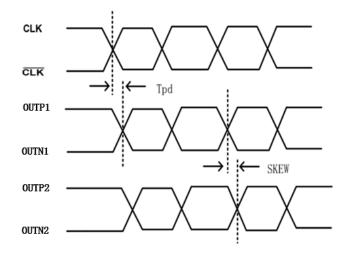



图4输出电压和上升/下降时间

图5输出和偏斜

注:输出偏斜按以下两者中的较大值计算:作为最快和最慢 tPLHn 之间的差值($n=0,1,2\cdots.7$),或作为最快与最慢 tPHLn 之间的差($n=0,1,2\cdots.7$)。

11 典型应用及注意事项

a) 差分信号输入以接受单端电平电路

对于单端输入的 LVCMOS 信号,驱动器中的 Rs 和 R0 形成 50 Ω 阻抗匹配,定向隔离电容器 C3 避免了输入和输出之间共模电平的影响,然后通过分压器和共模电平将接收器驱动到 VCC/2。

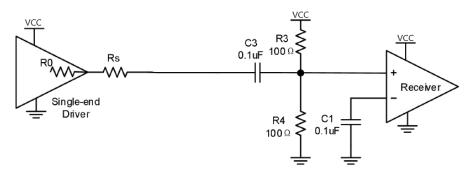
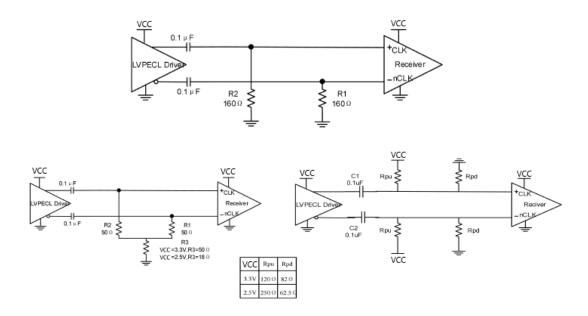



图6差分输入的单端接方法

b) 输入连接电路

CLK/CLK接受 LVDS、LVPECL、HCSL 和其他差分信号。两个差分信号都必须满足 VPP 和 VCMR 输入要求。图 7 至图 11 显示了由最常见的驱动器类型驱动的 CLK/CLK输入的接口示例。

图7 LVPECL 驱动器(AC)

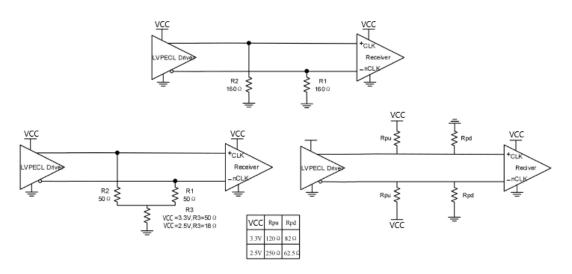


图8 LVPECL 驱动器 (DC)

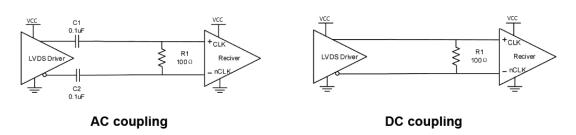


图9 LVDS 驱动器

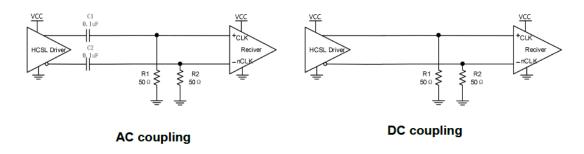


图10 HCSL 驱动器

c) 输出连接电路

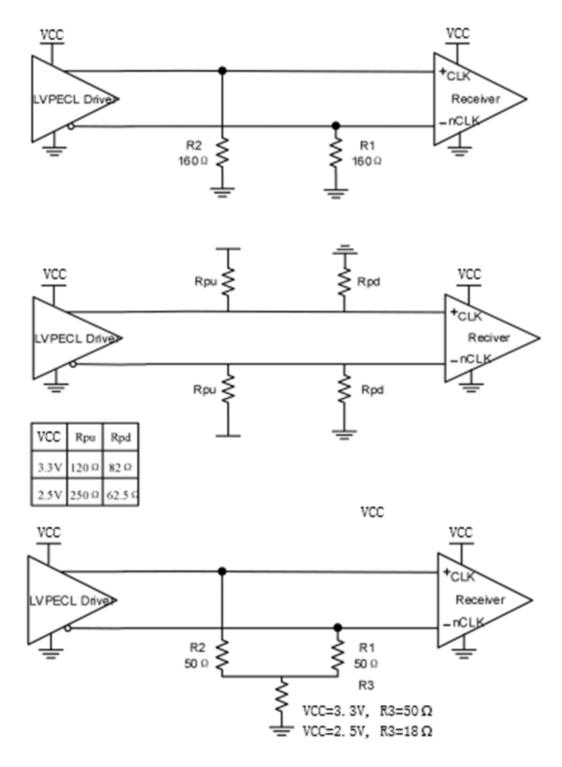


图11 LVPECL 驱动器

12 订货信息

<u>HA</u>	<u>CP</u>	<u>1216</u>	QN
1	2	3	4

- ① 单位简称
- ② 产品分类标识
- ③ 产品代号
- ④ 封装形式标识

13 版本修订

表4版本修订汇总表

版本	时间	描述	更改页
V1.0	2023.8.20	新建	