

40V N-Channel Enhancement Mode MOSFET

Description

The SX5N04MI uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =5A

 $R_{DS(ON)} < 37m\Omega$ @ $V_{GS}=10V$

Application

Wireless charging

Boost driver

LED

Absolute Maximum Ratings (T_c=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	40	V
VGS	Gate-Source Voltage	±20	V
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	А
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	3.5	А
IDM	Pulsed Drain Current ²	14	Α
EAS	Single Pulse Avalanche Energy ³	16.2	mJ
P o@T a=25℃	Total Power Dissipation ⁴	1	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$
ReJA	Thermal Resistance Junction-Ambient ¹	125	°C/W
ReJC	Thermal Resistance Junction-Case ¹	80	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.032		V/°C
RDS(ON)	Static Dunin Course On Decistors 2	Vgs=10V , Ip=4A		28	37	•
KD3(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , Ip=3A		40	50	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vds , ld =250uA	1.0	1.5	2.5	٧
△VGS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -250UA		-4.5		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C	:		1	uA
1033	Diain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		8		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.4	4.8	Ω
Qg	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =4.5V , I _D =3A		5		nC
Qgs	Gate-Source Charge			1.54		
Qgd	Gate-Drain Charge			1.84		
Td(on)	Turn-On Delay Time			7.8		
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V , R _G =3.3Ω I _D =1A		2.1		
Td(off)	Turn-Off Delay Time			29		ns
Tf	Fall Time	1 ID-17		2.1		
Ciss	Input Capacitance			452		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		51		pF
Crss	Reverse Transfer Capacitance			38		
IS	Continuous Source Current ^{1,4}	V V 0V 5			4.5	Α
ISM	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			14	Α
VSD	Diode Forward Voltage ²	V _G s=0V , I _S =1A , T _J =25°C			1.2	V
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , IJ=25°C			1.2	V

- Note:

 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The power dissipation is limited by 150 ℃ junction temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs.
Junction Temperature

Figure 9: Maximum Safe Operating Area vs. Case Temperature

Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data-SOT23-3L-Single

Symbol	Dimensions in Millimeters			
Symbol	MIN.	TYP.	MAX.	
А	1	1.1	1.2	
A1	0	0.05	0.1	
В	1.8	1.9	2	
B1	0.95TYP			
С	0.1	0.15	0.2	
D	2.82	2.92	3.02	
E	1.5	1.6	1.7	
E1	2.65	2.8	2.95	
L1	0.3	0.4	0.5	
L2	0.3	0.45	0.6	

Package Marking and Ordering Information

	aokago marking ana oraoring information				
Product ID		Pack	Marking	Qty(PCS)	
	TAPING	SOT23-3L		3000	

5