

-30V P-Channel Enhancement Mode MOSFET

Description

The SX6P03SI uses advanced Trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -30V I_{D} = -6A$

 $R_{DS(ON)} < 55 m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch
Uninterruptible power supply

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Max.	Units	
VDSS	Drain-Source Voltage	-30	V	
VGSS	Gate-Source Voltage	±20	V	
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ -10V¹	-6.0	Α	
l b@Tc=100℃	Continuous Drain Current, V _{GS} @ -10V¹	-3.3	A	
IDM	Pulsed Drain Current note1	-20.4	А	
PD	Power Dissipation T _A = 25 °C	2.15	W	
RθJA	Thermal Resistance, Junction to Ambient	70	°C/W	
TJ, TSTG	Operating and Storage Temperature Range	-55 to +150	°C	

1

Electrical Characteristics (T $_{\!J}$ =25 $\,^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, ID= -250µA	-30	-33	-	V	
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} = 0V,	-	-	-1	μΑ	
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA	
VGS(th)	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250µA	-1.0	-1.6	-2.5	V	
RDS(on)	Static Drain-Source on-Resistance note2	Vgs =-10V, ID =-5A	-	40	55		
		V _G S =-4.5V, I _D =-4A	-	65	90	mΩ	
Ciss	Input Capacitance		-	596	-	pF	
Coss	Output Capacitance	$V_{DS} = -15V, V_{GS} = 0V,$ f = 1.0MHz	ı	95	-	pF	
Crss	Reverse Transfer Capacitance		-	68	-	pF	
Qg	Total Gate Charge		-	6.8	-	nC	
Qgs	Gate-Source Charge	V_{DS} = -15 V , I_{D} = -5.1 A , V_{GS} = -10 V	-	1	-	nC	
Qgd	Gate-Drain("Miller") Charge		-	1.4	-	nC	
td(on)	Turn-on Delay Time		-	14	-	ns	
tr	Turn-on Rise Time	V _{DD} = -15V, I _D = -1A,	1	61	-	ns	
td(off)	Turn-off Delay Time	Vgs=-10V, $R_{GEN}=2.5\Omega$	1	19	-	ns	
tf	Turn-off Fall Time		-	10	-	ns	
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	-5.1	Α	
ISM	Maximum Pulsed Drain to Source Diode Forward Current		-	_	-20.4	Α	
VSD	Drain to Source Diode Forward Voltage	V _G S = 0V, I _S = -5.1A	-	-0.8	-1.2	V	

Note

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\, \leqq \, 300 \text{us}$, duty cycle $\, \leqq \, 2\%$
- $3\,{\,{}^{^{\circ}}}$ The power dissipation is limited by $150\,{\,{}^{\circ}\!}\mathrm{C}{\,junction}$ temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs.
Junction Temperature

Figure 8: Normalized on Resistance vs Junction Temperature

Figure 9: Maximum Safe Operating Area vs. Case Temperature

Figure 10: Maximum Continuous Drain Current

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data:SOT89-3L

Symbol	Dimensions In Millimeters		Dimensions In Inche	
	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.350	0.520	0.013	0.197
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF		0.061 REF	
E	2.350	2.550	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP		0.06	OTYP
e1	3.000 TYP		0.118	8TYP
L	0.900	1.100	0.035	0.047

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOT89-3L		3000

5