

30V N-Channel Enhancement Mode MOSFET

Description

The SX30N03SI uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

VDS=30V ID =30A

 $R_{DS(ON)} < 12m\Omega @ V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (Tc=25℃ unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	30	V	
VGS	Gate-Source Voltage	±20	V	
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	30	Α	
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V¹	18	Α	
IDM	Pulsed Drain Current ²	90	Α	
P o@Tc=25℃	Total Power Dissipation	37.5	W	
TSTG	Storage Temperature Range	-55 to 175	°C	
TJ	Operating Junction Temperature Range	-55 to 175	°C	
ReJA	Thermal Resistance Junction-Ambient ¹	125	°C/W	
ReJC	Thermal Resistance Junction-Case ¹	4	°C/W	

30V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (TJ=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	33		V	
∆BVDSS/∆T J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.0193		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , ID=30A		8.5	12	mΩ	
		V _{GS} =4.5V , I _D =15A		14	18	11122	
VGS(th)	Gate Threshold Voltage	\/oo=\/oo	1.2	1.6	2.5	V	
riangle VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-3.97		mV/℃	
IDSS	Drain Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA	
פפטו	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=5V , ID=30A		34		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω	
Qg	Total Gate Charge (4.5V)			9.8			
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		4.2		nC	
Qgd	Gate-Drain Charge			3.6			
Td(on)	Turn-On Delay Time			4			
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V ,		8		ns	
Td(off)	Turn-Off Delay Time	Rg=3.3 lp=15A		31			
Tf	Fall Time			4		7	
Ciss	Input Capacitance			940			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		131		pF	
Crss	Reverse Transfer Capacitance			109			
ls	Continuous Source Current ^{1,5}	V V 0V 5			43	А	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			112	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1	V	
trr	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		8.5		nS	
Qrr	Reverse Recovery Charge			2.2		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3、 The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1Mh,IAS=28A
- 4. The power dissipation is limited by $175\,^\circ\!\mathrm{C}$ junction temperature
- 5、 The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 4: Body Diode Characteristics

Figure 5: Gate Charge Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs Junction Temperature

Figure 9: Maximum Safe Operating Area Temperature

Figure 8: Normalized on Resistance vs.

Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data:SOT89-3L

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.350	0.520	0.013	0.197
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF		0.061 REF	
E	2.350	2.550	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP		0.06	OTYP
e1	3.000 TYP		0.11	8TYP
L	0.900	1.100	0.035	0.047

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOT89-3L		3000