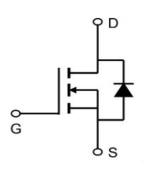


Description

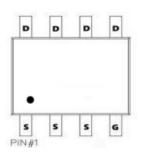
The SX10N10S uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 100V I_{D} = 12.3A$


 $R_{DS(ON)}$ < 110m Ω @ Vgs=10V

Application


Automative lighting

Load switch

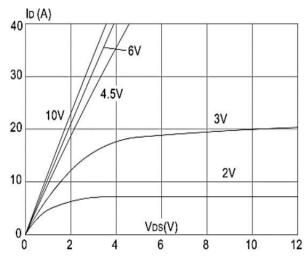
PSE

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage	100	V
VGS	Gate-Source Voltage	±20	V
lo@Tc=25℃	Drain Current, Vss @ 10V	12.3	А
lo@Tc=100°C	Drain Current, Vss @ 10V	6.5	А
IDM	Pulsed Drain Current ¹	24	А
Pb@Tc=25°C	Total Power Dissipation	30	W
Po@Ta=25°C	Total Power Dissipation ³	2.7	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
RθJA	Maximum Thermal Resistance, Junctionambient	85	°C/W
R0JC	Maximum Thermal Resistance, Junction-case	5.1	°C/W

Electrical Characteristics@Tj=25°C(unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Туре	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, Ip=250µA	100	107	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V,	-	-	1.0	μA
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250µA	1.0	1.5	2.5	V
RDS(on)		Vgs=10V, Ip=5A	-	93	110	mΩ
KD3(0II)	Static Drain-Source on-Resistance	Vgs=4.5V, ID=3A	-	100	140	mΩ
Ciss	Input Capacitance		-	645	-	pF
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V, f=1.0MHz	-	38	-	рF
Crss	Reverse Transfer Capacitance	1 1.000112	_	33	-	рF
Qg	Total Gate Charge		-	12	-	nC
Qgs	Gate-Source Charge	Vps=30V, Ip=5A, Vgs=10V	-	2.2	-	nC
Qgd	Gate-Drain("Miller") Charge	VGS-10V	-	2.5	-	nC
td(on)	Turn-on Delay Time		_	7	-	ns
tr	Turn-on Rise Time	V _{DS} =30V, I _D =10A,	_	5	-	ns
td(off)	Turn-off Delay Time	R _G =1.8Ω, V _G s=10V	-	16	-	ns
t _f	Turn-off Fall Time		-	6	-	ns
IS	Maximum Continuous Drain to Source Diode Forward Current		_	-	10	Α
ISM	Maximum Pulsed Drain to Source [d Drain to Source Diode Forward Current		-	40	Α
VSD	Drain to Source Diode Forward Voltage	V _G s=0V, I _S =10A	_	-	1.2	V
trr	Body Diode Reverse Recovery Time	1 404 11/11 4004/		21		ns
Qrr	Body Diode Reverse Recovery Charge	l⊧=10A, dI/dt=100A/µs	-	21	-	nC


Note:

- 1 The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The power dissipation is limited by $150\,^\circ\!\!\mathrm{C}$ junction temperature
- 4 . The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation.

2

Typical Characteristics

Figure1: Output Characteristics

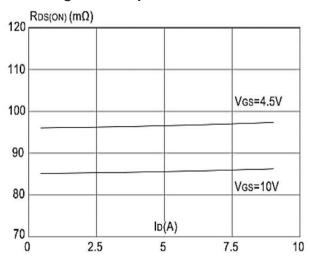
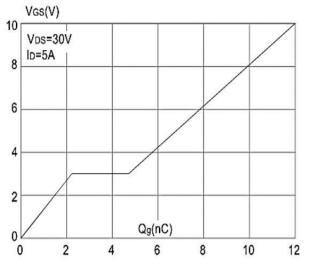
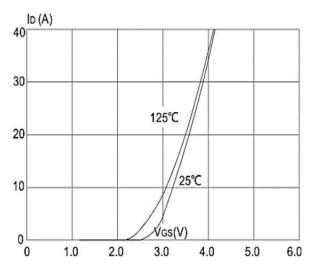




Figure 3:On-resistance vs. Drain Current

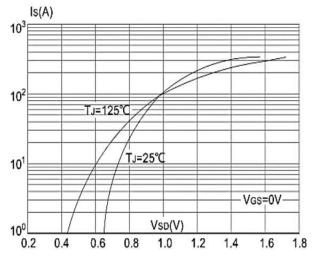


Figure 5: Gate Charge Characteristics

3

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

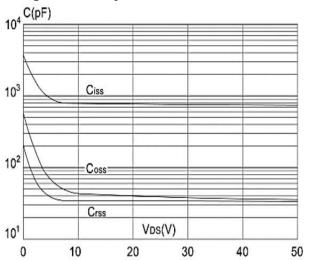
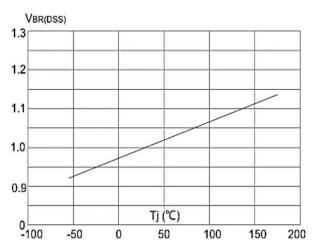



Figure 6: Capacitance Characteristics

Typical Characteristics

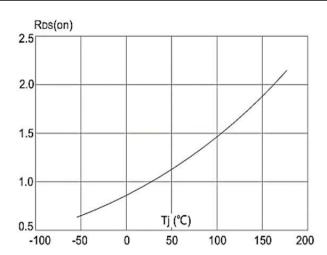
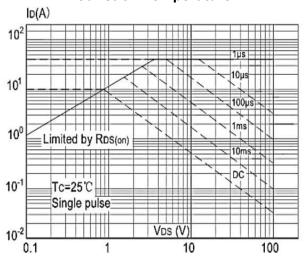



Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 8: Normalized on Resistance vs. Junction Temperature

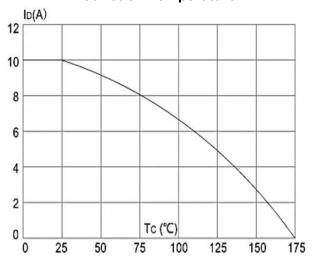
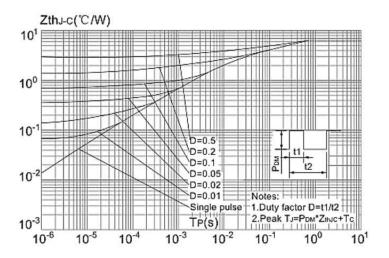
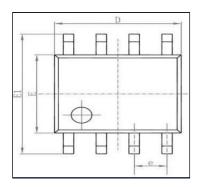
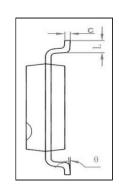
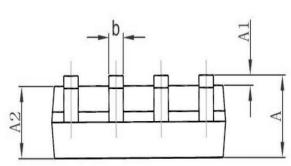


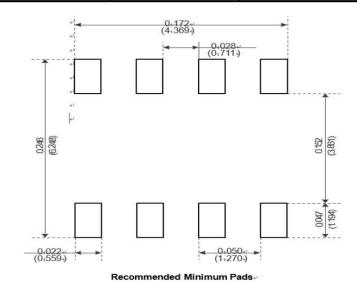
Figure 9: Maximum Safe Operating Area

Figure 10: Maximum Continuous Drain Current vs. Case Temperature


Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case


4


Package Mechanical Data-SOP-8

Cl I	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 27	0 (BSC)	0. 050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

5